RANKS AND SUBDEGREES OF G = PGL(2,q) ON THE COSETS OF ITS SUBGROUPS

Stanley Rotich^{1*}, Fidelius Magero² Kangogo Moses², Ireri Kamuti²

Abstract- This paper is set to compute the ranks and the subdegrees of PGL(2, q) acting on the cosets of its subgroups namely; C_{q-1}, C_{q+1} and P_q . This is done using the method proposed by Ivanov *et al.* which uses marks of a permutation group. For the action of PGL(2, q) on the cosets of C_{q-1} the subdegrees are shown to be 1^2 and $(q-1)^{(q+2)}$ and the rank is q + 4. For P_q the subdegrees are $1^{(q-1)}$ and $q^{(q-1)}$ and the rank is 2(q-1).

Index Terms- Rank, Subdegrees

I. INTRODUCTION

a) Burnside's definition of marks

Let P_G be a permutation representation (transitive or intransitive) of a group G on X. The mark of the subgroup Hof G in P_G is the number of points of X fixed by every permutation of H. incase $G(/G_i)$ is a coset representation; $m(G_j, G_i, G)$, the mark of G_j in $G(/G_i)$ is the number of cosets of G_i in G left fixed by every permutation of G_j .

b) White's definition of marks;

$$m(G_j,G_i,G) = \frac{1}{|G_i|} \sum_{g \in G} x(g^{-1}G_jg \subseteq G_i),$$

where *x* (statement)

 $= \begin{cases} 1, & if the statement is true \\ 0, & if the statement is untrue \\ a) Ivanov et al. definition of marks \end{cases}$

Ivanov *et al.* (1983) defined the mark in terms of normalizers of subgroups of a group as; if $G_j \leq G_i \leq G$ and $(G_{j1}, G_{j2}, \dots, G_{jn})$ is a complete set of conjugacy class representatives of subgroups of G_i that are conjugate to G_j in G, then;

$$m(G_{j}, G_{i}, G) = \sum_{k=1}^{n} |N_{G}(G_{j_{k}}): N_{Gi}(G_{j_{k}})|.$$

Stanley Rotich1*,Fidelius Magero2 Kangogo Moses2, Ireri Kamuti2

 Department of Mathematics Statistics and Actuarial Science , Machakos University, P. O. Box 136-90100, Machakos, Kenya
 Mathematics Department, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya

In particular when n = 1, G_j is conjugate in G_i to all subgroups $G_{j'}$ that are contained in G_i and are conjugate to G_j in G and;

$$m(G_j, G_i, G) = |N_G(G_j): N_{G_i}(G_j)|.$$

It can be shown that these definitions are equivalent. (Kamuti,1992)

A. Lemma

Let C_d (d coprime to p) be a cyclic subgroup of order d, then; $N_G(C_d) = \begin{cases} D_{q \pm 1}, & p \text{ odd} \\ D_{2(q \pm 1)} & p = 2 \end{cases}$

 \pm sign as $d \mid q \pm 1$. (Dickson, 1901)

B. Lemma

Let C_p be a cyclic subgroup of order p in G, then

$$N_{g}(C_{p}) = \begin{cases} \frac{1}{2}q(p-1) \ p \ odd, f \ odd\\ q(p-1)p \ odd f \ even\\ q \ p = 2 \end{cases}$$
(Dickson 1901)

(Dickson, 1901)

C. Lemma

Let d > 3 be a divisor of $(q \pm 1)$ and δ be the quotient, then $N_{G}(D_{2d}) = \begin{cases} D_{2d}, & \text{if } \delta \text{ is odd} \\ D_{4d} & \text{if } \delta \text{ is even} \end{cases}$ (Dickson, 1901)

D. Theorem

The number Q_i satisfy the system of equations;

$$\sum_{i=j} Q_i m(H_j, H_i, H) = m(H_j, H, G)$$

for each $j = 1, 2, \dots, t$.

(Kamuti, 1992)

II. SUBDEGREES OF G on the cosets of

$$H = C_{q-1}$$

Since H is abelian, each of its subgroups is normal. Suppose H has s subgroups say,

 $H_1 = 1$, $H_2, H_3, \dots, H_s = H$ with i|q-1 and, $(i = 1, 2, \dots, s-1)$. Now using the method proposed by Ivanov et al (1983) the table of marks of H can be computed as follows;

Table 2.1: Table of marks of $H = C_{q-1}$

After computing the table of marks of H, we now proceed to find

m(F) = m(F, H, G), where F is a representative of a conjugacy class in H and $F \le H$. The value of m(F) is obtained using Lemma1.1 and the method proposed by Ivanov et al. (1983). The values of m(F) are displayed in Table 2.2 below.

Table 2.2: The mark of F where $F \leq H = C_{q-1}$

						30
	F	$H_1 = I$	H_2	H ₃	$H_{4_{1}}$	
	M(F)	q(q + 1)	2	2	2	 He
1						To

Let $Q = (Q_1, Q_2, Q_3, \dots, Q_{5-1}, Q_5)$ denote the number of suborbits Δ_j . Then by Theorem 1.4 and using Table 2.2 and Table 2.1 we obtain the following system of equations;

$$(q-1)Q_{1} + m_{21}Q_{2} + \dots + m_{s-11}Q_{s-1} + Q_{s} = q(q+1)$$

$$m_{22}Q_{2} + \dots + m_{s-12}Q_{s-1} + Q_{s} = 2$$

$$\dots$$

$$m_{s-1s-1}Q_{s-1} + Q_{s} = 2$$

$$Q_{s} = 2.$$
Solving the share system of equations use their

Solving the above system of equations we obtain $Q = (q + 2, 0, 0, \dots, 2).$

Hence the subdegrees of G on the cosets of H are shown in Table 2.3 below

Table 2.3: Subdegrees of G on the cosets of C_{q-1}

Suborbit Length	1	q - 1
No. of Suborbits	2	q + 2

Therefore the rank (r) is given by; r = 2 + q + 2 = q + 4

III. SUBDEGREES OF G on the cosets of

$$H = C_{q+1}$$

Since *H* is cyclic thus it is abelian, so each of its subgroups is normal. If *H* has *s* subgroups say, $H_1 = 1$, H_2 , H_3 , ..., $H_s = H$ with i|q + 1 and (i = 1, 2, ..., s - 1).

Again using the method proposed by Ivanov et al. (1983) the table of marks of H can be as shown below;

Table 3.1: Table of marks of
$$H = C_{q+1}$$

Using Lemma 1.1 and Lemma 1.2 we find m(F) = (q(q - 1), 2, 2, ..., 2), s -tuples. Let $Q = (Q_1, Q_2, Q_3, ..., Q_s)$. Then using Table 3.1 and Theorem 1.4 we form the following systems of equations;

Solving the above system of equations we obtain

 $Q_{\pi-(q-2,0,0,=.G.,0,2)}$

Hence the subdegrees of G on the cosets of H are shown in Table 3.2 below

Table 3.2: Subdegrees of G on the cosets of $H = C_{q+1}$

Suborbit Length	1	q + 1
No. of Suborbits	2	q - 2

Therefore the rank (r) is given by; r = 2 + q - 2 = q

IV. SUBDEGREES OF G on the cosets of

$$H = P_a$$

Suppose *H* has *n* subgroups say

 $H_1 = I, H_2, H_3, H_4, \dots, \dots, H_n = H_1$

These subgroups are of order $1, p, p^2, p^3, \dots, p^n$ respectively since *H* is a *p*-group. Also all these subgroups are normal in *H*. So the table of marks of *H* omitting the zeros above the main diagonal is as shown in Table 4.1 below.

Table 4.1: Table of marks of $H = P_{a}$

1

After computing the table of marks of H, we now proceed to find

m(F) = m(F, H, G), where F is a representative of a conjugacy class in H and $F \le H$. The values of m(F) are displayed in Table 4.2 below.

Table 4.2: The mark of F, where $F \leq H = P_q$

F	$H_1 = I$	H_2	H ₃	$H_{4_{\nu}}$	 H_{n-1}	$H_n = H$
M(F)	$q^2 - 1$	q - 1	q - 1	q-1	 q-1	q-1

Let $Q = (Q_1, Q_2, Q_3, \dots, Q_{n-1}, Q_n)$ denote the number of suborbits Δ_j . Then by Theorem 1.4 and using Table 4.1 and Table 4.2 we obtain the following system of equations;

$$p^{n}Q_{1} + p^{n-1}Q_{2} + P^{n-2}Q_{3} + P^{n-3}Q_{4} + \dots + pQ_{n-1} + Q_{n} = q^{2} - 1$$

$$p^{n-1}Q_{2} + P^{n-2}Q_{3} + P^{n-3}Q_{4} + \dots + pQ_{n-1} + Q_{n} = q - 1$$

$$P^{n-2}Q_{3} + P^{n-3}Q_{4} + \dots + pQ_{n-1} + Q_{n} = q - 1$$

.....

$$pQ_{n-1} + Q_n = q - 1$$
$$Q_n = q - 1$$

Solving the above systems of equation we obtain $Q = (q - 1, 0, 0, \dots, 0, q - 1)$.

Hence the subdegrees of G on the cosets of H are shown in +Table 4.3 below.

Table 4.3: Subdegrees of **G** on the cosets of $H = P_{g}$

Suborbit Length	1	9
No. of Suborbits	q - 1	q - 1

Therefore the rank (r) is given by; r = (q - 1) + (q - 1) = 2(q - 1)

REFERENCES

- [1] Burnside, W. (1911). *Theory of groups of finite order*. Cambridge University Press, Cambridge.
- [2] Dickson, L. E. (1901). Linear groups with an exposition of the Galois field theory. Teubner, Dover, Newyork
- [3] Ivanov, A. A., Klin, M. H., Tsaranov, S. V. and Shpektorov, S. V. (1983). On the problem of computing subdegrees of transitive permutation groups. *Soviet Mathematical Survey* 38: 123 – 124.
- [4] Kamuti, I. N. (1992). Combinatorial formulas, invariants and structures associated with primitive permutation representations of PSL (2, q) and PGL (2, q), Ph. D. Thesis, Southampton University, U.K.

