Ranks And Subdegrees Of $\boldsymbol{g = p g l (2 , q)}$ On The Cosets Of Its Subgroups

Stanley Rotich ${ }^{1 *}$, Fidelius Magero 2 Kangogo Moses ${ }^{2}$, Ireri Kamuti ${ }^{2}$

Abstract- This paper is set to compute the ranks and the subdegrees of $P G L(2, q)$ acting on the cosets of its subgroups namely; C_{q-1}, C_{q+1} and P_{q}. This is done using the method proposed by Ivanov et al. which uses marks of a permutation group. For the action of $P G L(2, q)$ on the cosets of C_{q-1} the subdegrees are shown to be 1^{2} and $(q-1)^{(q+2)}$ and the rank is $q+4$. For P_{q} the subdegrees are $1^{(q-1)}$ and $q^{(q-1)}$ and the rank is $2(q-1)$.

Index Terms- Rank,Subdegrees

I. InTRODUCTION

a) Burnside's definition of marks

Let P_{G} be a permutation representation (transitive or intransitive) of a group G on X. The mark of the subgroup H of G in P_{G} is the number of points of X fixed by every permutation of H. incase $G\left(/ G_{i}\right)$ is a coset representation ; $m\left(G_{j}, G_{i}, G\right)$, the mark of G_{j} in $G\left(/ G_{i}\right)$ is the number of cosets of G_{i} in G left fixed by every permutation of G_{j}.
b) White's definition of marks;
$m\left(G_{j}, G_{\mathrm{i}}, G\right)=\frac{1}{\left|G_{\mathrm{i}}\right|} \sum_{g \in G} x\left(g^{-1} G_{j} g \subseteq G_{\mathrm{i}}\right)$,
where \boldsymbol{X} (statement)
$=\left\{\begin{array}{l}1, \text { if the statement is true } \\ 0, \text { if the statement is untrue }\end{array}\right.$
a) Ivanov et al. definition of marks

Ivanov et al. (1983) defined the mark in terms of normalizers of subgroups of a group as; if $G_{j} \leq G_{i} \leq G$ and $\left(G_{j 1}, G_{j 2}, \ldots \ldots \ldots \ldots, G_{j n}\right)$ is a complete set of conjugacy class representatives of subgroups of G_{i} that are conjugate to G_{j} in G, then;

$$
m\left(G_{j}, G_{i}, G\right)=\sum_{k=1}^{n}\left|N_{G}\left(G_{j_{k}}\right): N_{G i}\left(G_{j_{k}}\right)\right|
$$

Stanley Rotich1*,Fidelius Magero2 Kangogo Moses2, Ireri Kamuti2

[^0]In particular when $n=1, G_{j}$ is conjugate in G_{i} to all subgroups G_{j} that are contained in G_{i} and are conjugate to G_{j} in G and;
$m\left(G_{j}, G_{i}, G\right)=\left|N_{G}\left(G_{j}\right): N_{G_{i}}\left(G_{j}\right)\right|$.
It can be shown that these definitions are equivalent. (Kamuti, 1992)

A. Lemma

Let C_{d} (d coprime to p) be a cyclic subgroup of order d, then; $N_{G}\left(C_{d}\right)= \begin{cases}D_{q \pm 1} & p o d d \\ D_{2(q \pm 1)} & p=2\end{cases}$

$\pm \operatorname{sign}$ as $\boldsymbol{a} \mid q \pm 1$.

(Dickson, 1901)

B. Lemma

Let C_{p} be a cyclic subgroup of order p in G, then
$N_{G}\left(C_{p}\right)=\left\{\begin{array}{l}\frac{1}{2} q(p-1) \text { podd, } f \text { odd } \\ q(p-1) p \text { odd } f \text { even } \\ q \quad p=2\end{array}\right.$
(Dickson, 1901)

C. Lemma

Let $d>3$ be a divisor of $(q \pm 1)$ and δ be the quotient, then $N_{G}\left(D_{2 d}\right)= \begin{cases}D_{2 d_{0}} & \text { if } \delta \text { is odd } \\ D_{4 d} & \text { if } \delta \text { is even }\end{cases}$
(Dickson, 1901)

D. Theorem

The number Q_{i} satisfy the system of equations;
$\sum_{i=j}^{t} Q_{i} m\left(H_{j}, H_{\mathrm{i}}, H\right)=m\left(H_{j}, H, G\right)$
for each $j=1,2, \ldots \ldots, t$.
(Kamuti, 1992)
II. Subdegrees of \boldsymbol{G} on the cosets of

$$
H=C_{q-1}
$$

Since H is abelian, each of its subgroups is normal. Suppose H has s subgroups say,
$H_{1}=1, H_{2}, H_{3}, \ldots \ldots \ldots \ldots . H_{s}=H$ with $i \mid q-1$ and, $(i=1,2, \ldots, s-1)$.

RANKS AND SUBDEGREES OF $\boldsymbol{G}=\boldsymbol{P G L}(\mathbf{2}, \boldsymbol{q})$ ON THE COSETS OF ITS SUBGROUPS

Now using the method proposed by Ivanov et al (1983) the table of marks of H can be computed as follows;

Table 2.1: Table of marks of $\boldsymbol{H}=\boldsymbol{C}_{\boldsymbol{q}-1}$

	$H_{1} \quad H_{2} \ldots \ldots \ldots \ldots$.	H_{8}
$H\left(/ H_{1}\right)$	q-1	
$H\left(/ H_{2}\right)$	$m_{21} \quad m_{22}$	
$H\left(/ H_{s}\right)$	11	1

After computing the table of marks of H, we now proceed to find
$m(F)=m(F, H, G)$, where F is a representative of a conjugacy class in H and $F \leq H$. The value of $m(F)$ is obtained using Lemma1.1 and the method proposed by Ivanov et al. (1983). The values of $m(F)$ are displayed in Table 2.2 below.

Table 2.2: The mark of F where $\boldsymbol{F} \leq \boldsymbol{H}=\boldsymbol{C}_{\boldsymbol{q}-\mathbf{1}}$

F	$H_{1}=I$	H_{2}	H_{3}	H_{4}	\ldots
$M(F)$	$q(q+1)$	2	2	2	\ldots

Let $Q=\left(Q_{1}, Q_{2}, Q_{3}, \ldots \ldots . . Q_{5-1}, Q_{5}\right)$ denote the number of suborbits Δ_{f}. Then by Theorem 1.4 and using Table 2.2 and Table 2.1 we obtain the following system of equations;

$$
\begin{aligned}
&(q-1) Q_{1}+m_{21} Q_{2}+\cdots+m_{s-11} Q_{s-1}+Q_{s}=q(q+1) \\
& m_{22} Q_{2}+\cdots+m_{s-12} Q_{s-1}+Q_{s}=2 \\
& \cdots \\
& m_{s-1 s-1} Q_{s-1}+Q_{s}=2
\end{aligned}
$$

Solving the above system of equations we obtain

$$
Q=(q+2,0,0, \ldots \ldots, 2)
$$

Hence the subdegrees of G on the cosets of H are shown in Table 2.3 below

Table 2.3: Subdegrees of G on the cosets of $\boldsymbol{C}_{\boldsymbol{q}-\mathbf{1}}$

Suborbit Length	1	$q-1$
No. of Suborbits	2	$q+2$

Therefore the rank (r) is given by;
$r=2+q+2=q+4$
III. SUBDEGREES OF \boldsymbol{G} ON THE COSETS OF

$$
H=C_{q+1}
$$

Since H is cyclic thus it is abelian, so each of its subgroups is normal. If H has s subgroups say, $H_{1}=1, H_{2}, H_{3}, \ldots \ldots \ldots \ldots . H_{s}=H$ with $i \mid q+1$ and $(i=1,2, \ldots, s-1)$.

Again using the method proposed by Ivanov et al. (1983) the table of marks of H can be as shown below;

Table 3.1: Table of marks of $\boldsymbol{H}=\boldsymbol{C}_{\boldsymbol{q}+1}$

	$H_{1} \quad H_{2} \ldots \ldots \ldots \ldots \ldots$	H_{s}		
$H\left(/ H_{1}\right)$	$q+1$			
$H\left(/ H_{2}\right)$	m_{21}	m_{22}		
\ldots.	\cdots	\cdots	\ldots	
\ldots	\cdots	\cdots	$\ldots \ldots \ldots$	
$H\left(/ H_{s}\right)$	1	1	$\ldots \ldots \ldots$	1

Using Lemma 1.1 and Lemma 1.2 we find
$m(F)=(q(q-1), 2,2, \ldots, 2), s-$ tuples. Let
$Q=\left(Q_{1}, Q_{2}, Q_{2}, \ldots \ldots \ldots, Q_{s}\right)$. Then using Table 3.1 and
Theorem 1.4 we form the following systems of equations;

$$
\begin{aligned}
&(q+1) Q_{1}+m_{21} Q_{2}+\cdots+m_{s-11} Q_{s-1}+Q_{s}=q(q-1) \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& m_{s-1 s-1} Q_{s-1}+Q_{s}=2 \\
& Q_{s}=2
\end{aligned}
$$

Solving the above system of equations we obtain
$Q I_{\pi-1}(q-2,0,0,0, G, 0,2)$.
Hence the subcegrees of G on the cosets of H are shown in Table 3.2 below

Table 3.2: Subdegrees of G on the cosets of $\boldsymbol{H}=\boldsymbol{C}_{\boldsymbol{q}+1}$

Suborbit Length	$\mathbf{1}$	$q+1$
No. of Suborbits	2	$q-2$

Therefore the rank (r) is given by;
$r=2+q-2=q$
iv. Subdegrees of \boldsymbol{G} on the cosets of

$$
\boldsymbol{H}=\boldsymbol{P}_{\boldsymbol{q}}
$$

Suppose H has n subgroups say
$H_{1}=I, H_{2}, H_{3}, H_{4}, \ldots \ldots \ldots \ldots . H_{n}=H$.
These subgroups are of order $1, p, p^{2}, p^{a}, \ldots \ldots \ldots, p^{n}$ respectively since H is a p-group. Also all these subgroups are normal in H. So the table of marks of H omitting the zeros above the main diagonal is as shown in Table 4.1 below.

Table 4.1: Table of marks of $\boldsymbol{H}=\boldsymbol{P}_{\boldsymbol{q}}$

$H\left(/ H_{n-1}\right)$

$H\left(/ H_{n}\right)$	1	1	$\ldots \ldots \ldots .$.

After computing the table of marks of H, we now proceed to find
$m(F)=m(F, H, G)$, where F is a representative of a conjugacy class in H and $F \leq H$. The values of $m(F)$ are displayed in Table 4.2 below.

Table 4.2:The mark of F , where $\boldsymbol{F} \leq \boldsymbol{H}=\boldsymbol{P}_{\boldsymbol{q}}$

F	$H_{1}=I$	H_{2}	H_{a}	H_{4}	$\ldots \ldots$.	H_{n-1}	$H_{n}=H$
$M(F)$	$q^{2}-1$	$q-1$	$q-1$	$q-1$	\ldots	$q-1$	$q-1$

Let $Q=\left(Q_{1}, Q_{2}, Q_{2}, \ldots \ldots \ldots, Q_{n-1}, Q_{n}\right)$ denote the number of suborbits Δ_{f}. Then by Theorem 1.4 and using Table 4.1 and Table 4.2 we obtain the following system of equations;

$$
\begin{array}{r}
p^{n} Q_{1}+p^{n-1} Q_{2}+P^{n-2} Q_{2}+P^{n-1} Q_{4}+\cdots \ldots \ldots \ldots+p Q_{n-1}+Q_{n}=q^{2}-1 \\
p^{n-1} Q_{2}+P^{n-2} Q_{1}+P^{n-1} Q_{4}+\cdots \ldots \ldots \ldots+p Q_{n-1}+Q_{n}=q-1 \\
P^{n-2} Q_{a}+P^{n-1} Q_{4}+\cdots \ldots \ldots+p Q_{n-1}+Q_{n}=q-1
\end{array}
$$

$$
\begin{aligned}
p Q_{n-1}+Q_{n} & =q-1 \\
Q_{n} & =q-1
\end{aligned}
$$

Solving the above systems of equation we obtain

$$
Q=(q-1,0,0, \ldots \ldots, 0, q-1)
$$

Hence the subdegrees of G on the cosets of H are shown in +Table 4.3 below.

Table 4.3: Subdegrees of \boldsymbol{G} on the cosets of $\boldsymbol{H}=\boldsymbol{P}_{\boldsymbol{q}}$

Suborbit Length	1	q
No. of Suborbits	$q-1$	$q-1$

Therefore the rank (r) is given by; $r=(q-1)+(q-1)=2(q-1)$

REFERENCES

[1] Burnside, W. (1911). Theory of groups of finite order. Cambridge University Press, Cambridge.
[2] Dickson, L. E. (1901). Linear groups with an exposition of the Galois field theory. Teubner, Dover, Newyork
[3] Ivanov, A. A., Klin, M. H., Tsaranov, S. V. and Shpektorov, S. V. (1983). On the problem of computing subdegrees of transitive permutation groups. Soviet Mathematical Survey 38: 123-124.
[4] Kamuti, I. N. (1992). Combinatorial formulas, invariants and structures associated with primitive permutation representations of PSL $(2, q)$ and PGL $(2, q)$, Ph. D. Thesis, Southampton University, U.K.

[^0]: 1. Department of Mathematics Statistics and Actuarial Science Machakos University, P. O. Box 136-90100, Machakos, Kenya
 2. Mathematics Department, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya
