
World Journal of Research and Review (WJRR)

 ISSN: 2455-3956, Volume-14, Issue-3, March 2022 Pages 08-11

 8 www.wjrr.org

Abstract—Cookies can be collected, edited, or embezzled

since they are saved and transported in the form of text. This

paper examines the working concept of Cookies and suggests

rules for making Cookies that protect them from security

concerns. Three options are offered to meet the security criteria.

Cookies, web security, multiple web authentication, and

digital signatures are some of the terms used in this article.

I. INTRODUCTION

 Cookies are necessary for the modern Internet, but they

also pose a risk to your privacy. Cookies are a necessary

element of the web browsing experience. Cookies assist

website developers in providing more tailored and easy

website experiences.

Cookies allow websites to remember you, your logins,

shopping carts, and other information. They can, however, be

a gold mine of personal information for crooks to snoop on.

It's easy to become overwhelmed when it comes to protecting

your privacy online. Fortunately, even a simple awareness of

cookies can assist you in keeping prying eyes away from your

online activities. While the majority of cookies are harmless,

some can be used to track you without your permission.

Worse, if a criminal gains access to a computer, legal cookies

can be spied on.

II. HOW COOKIES WORKS

The diagram above shows how a cookie works. Figure 1

shows how to navigate a website without using a cookie.

When a web server receives a URL request from a browser, it

searches for cookies. If cookies aren't accessible, it creates a

cookie for the user with a unique id, embeds the website's

header in the cookie, and sends it to the user. After then, the

cookie will be saved on the user's hard drive. The website

database stores the user's preferences and settings, along with

a link to the cookie's id value. The cookie is then passed with

the URL every time the user visits the same site, and the web

server, using the unique id in the cookie, pulls the user's

personalized preferences from the database and passes them

to them.

Naman Kumawat, Department of Computer Science, Vivekananda Institute

of Technology, Jaipur, India

Ramesh Choudhary, Department of Computer Science, Vivekananda

Institute of Technology, Jaipur, India

Ankit Kumar Tiwari, Assist. Prof. Department of Computer Science,

Vivekananda Institute of Technology, Jaipur, India

Fig. 1: URL request from a browser

III. RISK ASSOCIATED WITH COOKIES

A. Cross-Site request Forgery Attack

Cookies are vulnerable since they are delivered with
every request, making it possible for attackers to use
CSRF and make malicious requests. The impact of
CSRF vulnerability is also determined by the victim's
privilege, as well as the Cookie that is sent in response to
the attacker's request. While data extraction isn't the
primary goal of a CSRF attack, state changes will almost
certainly have a negative impact on the web application
under assault. As a result, it is recommended that you
avoid implementing preventive approaches to protect
your website from CSRF.

B. Session Fixation

Attacks on session fixation are based on the application
level. An attacker forces the victim to use the attacker's
or another's session ID in this type of attack. This is
accomplished by exploiting the cookie's browser
directive path, which allows the user to impersonate
someone else. An attacker can use this strategy to
persuade the user to log in as the attacker on several
application levels.

A Case Study on Cookies and Cyber Security

Naman Kumawat, Ramesh Chaudhary, Ankit Kumar Tiwari

A Case Study on Cookies and Cyber Security

 9 www.wjrr.org

C. Cross-site Scripting

An attacker must place the exploit in a cookie in order to
carry out a cross-site scripting attack. The exploit vector
will then retrieve the payload from the cookie and carry
out the exploitation. If the cookie has already been set,
this form of assault becomes more difficult.

D. Cookie Tossing Attack

Cookie tossing is one of the most common sorts of
cookie attacks, and it works like this: Consider a user
who goes to www.example.com and gets a domain
cookie. The cookie is delivered to the web server the
next time the user visits the same site. The issue now is
that the cookie contains no path or website name. As a
result, if an attacker creates a subdomain cookie and
transmits it along with a real cookie, the web server will
accept both. Because there is no rule requiring the
browser to transmit the domain cookie first, it may opt to
send the subdomain cookie first. If the malicious
subdomain cookie is the first one received by the web
server, it will be treated as valid, and the value of that
cookie will be used to provide the user with a session.
The web server is unable to determine which cookie is
real since cookie properties such as domain path secure
and HTTP only are not sent to it.

E. Cookies overflow attack

A parent domain cookie can be replaced with a
subdomain cookie in this type of attack by employing a
Jscript in the subdomain. Browsers have a restriction on
how many cookies they can keep, and some, such as
Chrome, don't check if the cookies are from a domain or
a subdomain. It does nothing but save the cookies that
are given to it. The subdomain cookies that will be
updated will not be of the HTTP Only or secure types.
After storing the subdomain cookie, an attacker can now
modify the cookie's expiry date, rendering the cookie
meaningless. Now the attacker has the ability to create a
new malicious cookie and send it to the web server.
Furthermore, there is no way for a web server to tell if a
cookie is secure or HTTP Only. As a result,
manufactured cookies can be used to carry out an attack.

IV. SECURITY REQUIREMENTS OF COOKIES

A. Confidentiality

Cookies typically contain information that is used to
distinguish a user's status and individual material; thus,
we must ensure that this information is kept private.
Cookies' information can be revealed in two ways: first,
it can be intercepted in transit, and second, it can be
stolen when it is stored in the user's equipment.

B. Integrity

We must ensure cookie integrity in order to prevent an attacker
from inserting harmful executable code into cookies using a
specific mark. When cookies are used to verify a user's

identity, if the content of the cookies is modified, the
authentication will fail. An attacker might alter the content of a
legitimate user's Cookies, preventing them from accessing a
specific website. In cookies, the domain and path are
extremely significant. Cookies will be transmitted to an
attacker if these two are changed by an attacker.

C. Identifiability

Illegal tampering can be prevented by encrypting

cookies. However, by uploading cookies obtained from

genuine users to the Web site, the attacker can still

impersonate the legitimate user. As a result, the criteria

must be able to verify that the entity providing Cookies

is the correctly owner of the Cookies

V. THE COOKIES SECURITY SOLUTIONS

A. Mark cookies as Secure

So, how do we ensure that that cookie is only
accessible by our website? The first step is to ensure that
the website is HTTPS-enabled. I'm not referring to using
HTTPS instead of HTTP in this case. The only way to go
is through HTTPS. No one can use a man-in-the-middle
attack or something similar to inspect the traffic between
the browser and the webserver if you solely use HTTPS.
You'll need to notify it that cookies should only be
available over HTTPS when you migrate to HTTPS.
You can do so worldwide by adding the following to
Web.config:

B. Mark cookies as HttpOnly

There's a simple remedy because many cookies don't
need to be accessible from JavaScript. HttpOnly cookies
are marked. HTTP only cookies, as the name suggests,
can only be accessible by the server during an HTTP (S!)
request. The authentication cookie is a fantastic example
of a cookie that should always be tagged as HttpOnly
because it is only used to communicate between the
client and the server.
Here's how to do it in Web.config:

C. Avoid TRACE requests

It's not always enough to mark cookies as Secure and
HttpOnly. Cross-Site Tracing (XST) is a hacking
technique in which a hacker utilizes the request methods
TRACE or TRACK to overcome cookies designated as
HttpOnly. The TRACE method was created to aid
debugging by allowing the client to view how a server
interprets a request. This debugging information is
printed to the response, allowing the client to read it.
If a hacker has successfully injected code onto your
page, he/she could run the following script:

World Journal of Research and Review (WJRR)

 ISSN: 2455-3956, Volume-14, Issue-3, March 2022 Pages 08-11

 10 www.wjrr.org

The request, including server variables, cookies, and
other data, is now written to the console if the recipient
site supports TRACE requests. Even if the
authentication cookie is designated as Secure and
HttpOnly, this will reveal it.
Fortunately, TRACE queries from JavaScript are not
supported by newer browsers. You can still rule out the
option by making the following changes to your
Web.config:

D. Avoid CSRF

We're nearly there. However, there is one issue that is
lacking. All that effort to keep others from eavesdropping
traffic between your client and server has resulted in yet
another issue. You may have heard of a phenomenon
known as Cross-Site Request Forgery (CSRF). The
process of tricking a user into requesting a website where
he or she is already signed in is known as cross-site
request forgery (CSRF). This can be in the form of hidden
forms, image elements, and more.
None of the aforementioned adjustments protect against
CSRF. Both ASP.NET and ASP.NET Core have the
ability to generate tokens that the server can use to
validate each request. Allow your server to generate a
one-of-a-kind token, then update all of your forms to
incorporate it. ASP.NET (Core) checks the token before
uploading data to the server and throws an error if it is
invalid.
SameSite is a cookie characteristic that indicates whether
or not your cookies are solely used for first-party requests.
Let's have a look at an example to see what I mean.
Cookies are transmitted between the client and server
when a page on domain domain1.com requests a URL on
domain1.com and the cookies are adorned with the
SameSite attribute. Cookies are not transferred when
domain2.com accesses domain1.com and the cookies on
domain1.com are adorned with the SameSite attribute.

The SameSite attribute is supported by both.NET 4.7.2
and.NET Core 3.1. However, the simplest
implementation (in my opinion) is to add a rewrite rule to
Web.config:

SameSite=lax is automatically appended to all cookies by

the rule. The term "lax" refers to when the cookie is sent in

response to first-party requests or top-level navigation (URL

in the browser changes). Another option is strict, which sends

cookies only on first-party requests. A domain linked to your

site will prevent IIS from sending the cookie in this scenario.

VI. CONCLUSION

The cookies system not only corrects HTTP's flaws, but it

also adds a slew of additional features to the Web application.

It is simple to implement and utilize at the same time.

However, the widespread use of Cookies has resulted in a

slew of security issues. During our analysis, we discovered

that the following factors contribute to the security of

cookies: First, cookies have design issues; second, the

cookies application and configuration are improperly

configured by developers and users, posing a safety risk. This

study examines the two primary challenges in detail,

including the operating principle and safety, as well as three

strategies for improving the safety of Cookies.

ACKNOWLEDGMENT

This research was supported by Mr. Ankit Kumar Tiwari,
Assistant Professor at Vivekananda Institute of Technology,
Jaipur. In addition, the author would like to thank the
reviewers for their valuable comments and suggestions.

A Case Study on Cookies and Cyber Security

 11 www.wjrr.org

REFERENCES

[1] Claudio Dodt. (2020 July 7). “Cookies: An overview of

associated privacy and security risks”. Available:

https://resources.infosecinstitute.com/topic/cookies-an-overvie

w-of-associated-privacy-and-security-risks/.

[2] The Cookie Law Explained. Available:

https://www.cookielaw.org/the-cookie-law/.

[3] Edwards, L. (2018). Data protection and e-privacy: From spam

and cookies to big data, machine learning and profiling.

Machine Learning and Profiling (2018 May 23). Forthcoming

in L Edwards ed Law, Policy and Internet (Hart,2018).

[4] Thomas Ardal. (2019 December 19). “The ultimate guide

secure cookies with web.config in .NET”. Available:

https://blog.elmah.io/the-ultimate-guide-to-secure-cookies-wit

h-web-config-in-net/.

[5] "What are cookies? What are the differences between them

(session vs. persistent)?". Cisco. 17 July 2018. 117925.

[6] The Open Web Apllication Security Project (OWASP). 2018.

Available: http://www.swascan.com/owasp/

[7] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter

Zimmerman, Jonathan Mayer, Arvind Narayanan, and Edward

W Felten. Cookies that give you away: The surveillance

implications of web tracking. In Proceedings of the 24th

International Conference on World Wide Web, pages 289–299.

International World Wide Web Conferences Steering

Committee, 2015.

[8] Zachary Evans and Hossain Shahriar. Web session security:

Attack and defense techniques. Case Studies in Secure

Computing: Achievements and Trends, page 389, 2014

[9] The Cookie Collective. How We Classify Cookies, 2013.

http://cookiepedia.co.uk/classify-cookies.

https://www.cisco.com/c/en/us/support/docs/security/web-security-appliance/117925-technote-csc-00.html
https://www.cisco.com/c/en/us/support/docs/security/web-security-appliance/117925-technote-csc-00.html
https://www.cisco.com/c/en/us/support/docs/security/web-security-appliance/117925-technote-csc-00.html
http://www.swascan.com/owasp/

