
https://doi.org/10.31871/WJRR.13.3.8 World Journal of Research and Review (WJRR)

 ISSN: 2455-3956, Volume-13, Issue-3, September 2021 Pages 21-26

 21 www.wjrr.org



Abstract— In this paper I review the decisive proofs that P ≠

NP, and NP=EXPTIME in the context of the

Zermelo-Frankel set theory and deterministic Turing machines.

The results of these proofs definitely solve the 3rd Clay

Millennium Problem about P versus NP, in a simple and

transparent away that the general scientific community, but

also the experts of the area, can follow, understand and

therefore become able to accept. So far the solutions of this

famous problem seem that they have not been noticed by the

wider relevant scientific community. The main purpose of this

paper is to make widely known the solutions of the 3rd Clay

Millennium problem “P versus NP” to the relevant scientific

community.

Index Terms—3rd Clay Millennium problem,

EXPTIME-complete problems, NP-complexity, P-complexity

Mathematical Subject Classification: 68Q15.

I. INTRODUCTION

Two solution of the famous P versus NP problem has been

published in [9] Kyritsis C and in this paper we review,

discuss and present the solutions. In the history of

mathematics, it is known that difficult problems that have

troubled a lot the mathematicians, turned out to have different

proofs one simple and one very complex. Such an example is

if the general 5th order polynomial equation can be solved

with addition, subtraction, multiplication, division and

extraction of radicals starting from the coefficients. The

famous mathematician Niels Henrik Abel who gave a very

simple proof. On the other hand, the proof of the same, by

the E. Galois theory, is a whole book of dozens of pages!

And a famous mathematician once said that “Once a proof

is known to a mathematical problem, then immediately after

it becomes trivial!”

It is the same with the solution of the P versus NP problem in

this paper. We will utilize in our proofs, the key abstraction of

the existence of an EXPTIME complete language, (it is

known that it exists) without specifying which one, which

will simplify much the arguments. Then we synthesize other

languages and arguments over it, that will solve the problem.

A second issue that is important to mention, is a statement,

that is usually attributed to the famous mathematician Yuri

Manin, that “A correct proof in mathematics is considered

a proof only if it has passed the social barrier of being

accepted and understood by the scientific community and

published in accepted Journals”

Passing the obstruction of the social barrier, sometimes is

Konstantinos E. Kyritsis Dept. Accounting-Finance University of

Ioannina, Greece

more difficult than solving the mathematical problem itself!

We must notice here that the P versus NP problem, is in

fact a set of different problems within different axiomatic

systems. In the context of what axiomatic system is the

Complexity Theory of Turing machines? Since the

complexity theory of Turing machines requires entities like

infinite sets of words then it is in the context of some

axiomatic set theory, together with the axiom of infinite. So

we notice that the next are different problems:

1) The P versus NP problem in the Zermelo-Frankel

axiomatic system of sets without the axiom of

choice and this axiomatic system formulated in the

2rd order formal languages.

2) The P versus NP problem in the Zermelo-Frankel

axiomatic system of sets with the axiom of choice

and this axiomatic system formulated in the 2rd

order formal languages.

3) Etc

We might try to think of the P versus NP problem within

the context of the axiomatic system of Peano Arithmetic with

or without the axiom of induction and within second order

formal languages. But to do so, we must carefully define,

what additional axioms or definitions give the existence of

infinite subsets of natural numbers that are used in the

Complexity Theory.

The main hidden guiding idea in searching for such a

simple proof, was that what the “arbitrary human-like

free-will” of a non-deterministic Turing machine as

human-machine interactive software (e.g. in password

setting), can do in polynomial time cannot be done by a

purely mechanical deterministic Turing machine in

polynomial time. (See also beginning of paragraph 4) After

the Key-abstraction mentioned above I had to find the right

simple argumentsto make a valid proof of this idea. The proof

of the P versus NP problem in the direction P ≠ NP, is

supposed also to mean that the standard practice of

encryption in the internet, is safe.

We notice also that the P versus NP:

1) It is a difficult problem, that has troubled the

scientific community for some decades

2) It may have simple proofs of a few paragraphs,

hopefully not longer than the proof of the Time

Hierarchy theorem, which seems to be a deeper

result.

3) But it can also have very lengthily and complex

proofs, that may take dozens of pages.

4) There many researchers (more than 5 of them) that have

claimed to have solved it, either as P=NP, or as P ≠ NP, and

Review of the Solutions of the Clay Millennium

Problem about P ≠ NP =EXPTIME

Konstantinos E. Kyritsis

Review of the Solutions of the Clay Millennium Problem about P ≠ NP =EXPTIME

 22 www.wjrr.org

even as suggestion that neither are provable, but only a

handful of them seem to have been able to pass the

preliminary social barrier and publish their solution in

conferences or Journals with referees. The rest of them have

published online only preprints (see e.g. the [17] P versus NP

page). It seems to me though that it is not probable that all of

them have correct solutions. Especially in the direction

P=NP, there is a common confusion and mistake, that has

been pointed out by Yannakakis M. [18]. Furthermore, this

confusing situation has contributed so that although there are

publications in respectable Journals, the experts and the

scientific community does not seem of being able to decide if

the P versus NP problem has been solved or not. This is

reasonable, as there are proofs of close to 100 pages, and no

average reader would feel comfortable to go through them,

and decide for himself if there a flaw or error somewhere.

Still it is better to have published results than non-published,

and then let the large number of readers to try to find errors or

flaws in the solutions if there are any.

So here comes the need of a more challenging problem:

Not only to solve the P versus NP problem, but also solve it in

such an simple, elegant and short way, so that the researchers

will know a decisive proof that they can understand and

control that P ≠ NP or not, so short that anyone familiar with

the area, would discover any flaw or error if it existed.

This is I believe the value of the present paper that provides

such a proof in the context of the Zermelo-Frankel set theory

(we do not use the axiom of choice), formulated e.g. within

2nd order formal languages.

What this proof is or is not:

1) It does not introduce new theoretical concepts in

computational complexity theory so as to solve

the P versus NP.

2) It does not use relativization and oracles

3) It does not use diagonalization arguments,

although the main proof, utilizes results from

the time hierarchy theorem

4) It is not based on improvements of previous

bounds of complexity on circuits

5) It is proved with the method of counter-example.

Thus it is transparent short and “simple”. It

takes any Exptime-complete DTM decision

problem, and from it, it derives in the context of

deterministic Turing machines a decision

problem language which it is apparent that it

belongs in the NP class decision problems

while it does not belong the class P of decision

problems.

6) It seems a “simple” proof because it chooses the

right context to make the arguments and

constructions and the key-abstraction

mentioned above. So it helps the scientific

community to accept that this 3rd Clay

Millennium problem has already been solved.

In the paragraph 4, we give an advanced, full proof that P ≠

NP, in the standard context of deterministic Turing machines,

solving thus the 3rd Clay Millennium problem.

II. PRELIMINARY CONCEPTS, AND THE

FORMULATION OF THE 3RD
 CLAY MILLENNIUM

PROBEM, P VERSUS NP.

In this paragraph, for the sake of the reader, we will just

mention the basics to understand the formulation of the 3rd

Clay Millennium problem. The official formulation is found

in [3] (Cook, Stephen (April 2000), The P versus NP

Problem (PDF), Clay Mathematics Institute site). Together

with an appendix where there is concise definition of what are

the Deterministic Turing machines, that is considered that

they formulate, in Computational Complexity theory , the

notion and ontology of the software computer programs.

In the same paper are also defined the computational

complexity classes P, NP.

The elements of the classes P, NP etc strictly speaking are

not only sets of words denoted by L, that is not only

languages, but also for each such set of words or language L

at least one DTM , M that decides it, in the specified

complexity so they are pairs (L,M). Two such pairs (L1, M1)

(L2, M2) are called equidecidable if L1 = L2 although it may

happen that M1 ≠ M2 . E.g. if the complexity of M1 is

polynomial-time while that of M2 exponential-time choosing

the first pair instead of the second means that we have turned

a high complexity problem to a feasible low complexity

problem.

The definition of other computational complexity classes

like EXPTIME etc. can be found in standard books like

[6],[11],[12]. In the official formulation [3] there is also the

definition of the concept of a decision problem language in

polynomial time reducible to another decision problem

language.

Based on this definition it is defined that an

EXPTIME-complete decision language of EXPTIME is

EXPTIME-complete, when all other decision problems

languages of EXPTIME have a polynomial time reduction to

it. Here is the exact definition

Definition 2.1 Suppose that Li is a language over all

words Σi , i = 1, 2. Then L1 ≤p L2 (L1 is p-reducible to L2)

iff there is a polynomial-time computable function f : Σ1 -> Σ2

such that x є L1 if and only if f(x) є L2, for all x є Σ1.

In the same books [6],[10],[11] can be found the concepts

and definitions of NP-complete and EXPTIME-compete

decision problems. See also [7], [12] where its proved that

specific decision problems are EXPTIME-complete.

For simplicity we will consider here only binary alphabets

{0,1} and sets of binary words Σ.

III. WELL KNOWN RESULTS THAT WILL BE USED.

We will not use too many results from the computational

complexity theory for our proof that P ≠ NP.

A very deep theorem in the Computational Complexity is

https://en.wikipedia.org/wiki/Stephen_Cook
http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf
http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf
http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute

https://doi.org/10.31871/WJRR.13.3.8 World Journal of Research and Review (WJRR)

 ISSN: 2455-3956, Volume-13, Issue-3, September 2021 Pages 21-26

 23 www.wjrr.org

the Time Hierarchy Theorem (see e.g.

[6],[11],[12],[10],[14]. This theorem gives the existence of

decision problems that cannot be decided by any other

deterministic Turing machine in less complexity than a

specified.

Based on this theorem, it is proved that:

Proposition 3.1 There is at least one EXPTIME-complete

decision problem, that cannot be decided in polynomial time,

thus P ≠EXPTIME.

The next two propositions indicate what is necessary to

prove in order to give the solution of the P versus NP

problem.

Proposition 3.2 If the class NP contains a language L

which cannot be decided with a polynomial time algorithm,

then P ≠ NP.

Proposition 3.3 If the class NP contains a language L

which is EXPTIME complete, then NP=EXPTIME.

IV THE SOLUTION: P ≠ NP=EXPTIME IN THE

CONTEXT OF DETERMINSITIC TURING MACHINES

We will prove in this paragraph that P ≠ NP in the context

of second order formal language of the Zermelo-Frankel set

theory.

Since we are obliged to take strictly the official

formulation of the problem, rather than text books about it,

we make the next clarifications.

We will use the next conditions for a Language to be in the

class NP, as stated in the official formulation of the P versus

NP problem (see [3] Cook, Stephen (April 2000), The P

versus NP Problem (PDF), Clay Mathematics Institute.).

We denote by Σ* all the words of an alphabet Σ.

Definition 4.1 A language L of binary words is in the class

NP if and only if the next conditions hold

1) There is a deterministic Turing machine M that

decides L. In other words for any word x in L,

when x is given as input to M, then M accepts it

and if x does not belong to L then M rejects it.

In symbols: Ǝ a deterministic Turing machine M, such that

ⱯxєΣ*, x is either accepted or rejected by M and if M accepts

x → xєL, and if M reject x → x ɇL

2) There is a polynomial-time checkable relation

R(x,y), and a natural number k of N, so that for

every word x , x belongs to L if and only if there

is a word y , with |y|<=|x|k , and R(x,y) holds.

In symbols:Ǝ relation R which is polynomial-time

checkable ,and Ǝ kєN, such that ⱯxєΣ*,

xєL↔ (Ǝ yє Σ*, |y|<=|x|k and R(x,y) holds).

Remark 4.1. In the official statement of the P versus NP

problem (see [3] Cook, Stephen (April 2000), The P versus

NP Problem (PDF), Clay Mathematics Institute) the

condition 1) is not mentioned. But anyone that has studied

complexity theory, knows that it is required. The condition 2)

alone cannot guarantee that there is a deterministic Turing

machine that decides the language., as the polynomial

checkable relation works only if we provide it with certificate

y, and not with only x as input. Indeed we shall see below at

the end of the proposition in Remark 4.4, that there is even

an undecidable language L , for which nevertheless there is a

polynomial checkable relation R, so that condition R is

satisfied. The languages of NP cannot be semidecidable (or

undecidable). The NP class is also defined as NP =∪kєN

NTIME(nk), but this definition is also in the context of

non-deterministic Turing Machines. The situation with P, is

more clear, because the mere requirement that a language of P

is of polynomial time complexity as it is standard to define it ,

involves already that there exist a deterministic Turing

machines that for every input word, it halts within polynomial

time steps and either accepts or rejects it, therefore it decides

it. And not only that is simply the language of a deterministic

Turing machine , and therefore maybe only semi-decidable.

Remark 4.2. Notice that in the condition 2) the k depends

on the relation R and is not changing as the certificate y

changes. In other words k does not depend on y and we did

not state the next:

There is a polynomial-time checkable relation R(x,y), so

that for every word x , x belongs to L if and only if there is a

word y , and k in N ,with |y|<=|x|k , and R(x,y) holds. In

symbols: Ǝ relation R which is polynomial-time checkable ,

such that ⱯxєΣ*, xєL↔ (ƎyєΣ* and ƎkєN such that |y|<=|x|k

and R(x,y) holds).

In the official statement of the P versus NP problem (see

[3] Cook, Stephen (April 2000), The P versus NP

Problem (PDF), Clay Mathematics Institute) this is not made

clear, in the natural language that the definition is stated. But

that k does not depend on the certificate, but on the

polynomial checkable relation becomes clear, when we look

at the proof in any good textbook about complexity theory, of

how a non-deterministic Turing machine which runs in

polynomial time, can define a deterministic Turing machine

with a polynomial time checkable relation, which is

considered that replaces it.

Remark 4.3: My main intuition to find a proof that

P ≠ NP=EXPTIME. The password setting.

Let us make the next thought-experiment: Imagine a

human Mr H who has available infinite time, and has infinite

mental capabilities. No the world asks Mr H to set passwords

on all lengths of words! So Mr H sets a password p(l) for

words of length l=1,2, 3,...n,...etc. Next let us imagine the

problem of finding the password of length say x=153. Mr H

has an arbitrary free will and he is honest not to give his

passwords, in addition Mr H has provided us with a device

D(l) for each length l, that unlocks if we give to it the

password p(l), so we will know if w is the password or not. So

the only way to discover if particular word w of length |w|=

l=153 is the password p(153) or not, it is to search all the

words of length l in an exhaustive way and try them on the

device D(l). This is of course a an EXPTIME complexity

problem, that cannot be reduced to a polynomial time

problem. Therefore, finding the language LP of passwords

p(l) of Mr H, cannot be a problem of polynomial time

complexity. If in addition, we assume that the blind

Review of the Solutions of the Clay Millennium Problem about P ≠ NP =EXPTIME

 24 www.wjrr.org

exhaustive search of all words of length l, is an

EXPTIME-complete complexity problem on the initial data l,

then finding the language of passwords of Mr H is also an

EXPTIME-complete problem. Nevertheless, for each word w

of length l, the Device(l) is the polynomial time on the length

l, checkable relation (certificate for each word w), that can

decide if w is a password or not, therefore the problem of

finding the language L, is in the NP class complexity. But the

above then after Propositions 3.2 and 3,3, indicate that P ≠

NP=EXPTIME.

Now this intuitive idea, is obviously not a formal proof at

all, as we are taking about “human Mr H”, “arbitrary human

free will” etc. Besides we are taking about the complexity of

problems here rather than the complexity of languages. How

can we turn this intuition to strict and formal proof, without

using oracles, or non-formal arguments? The solution is the

key-abstraction that I mentioned in the Introduction, that is to

start with the existence of an EXPTIME-complete

complexity language, that we know it exists, without

specifying which one. Then define other languages over it

and make simple arguments that solve to P versus NP

problem.

So the strategy to solve the P versus NP problem, is quite

simple: We will start with an exptime-complete decision

problem and its language Lexp and we will derive from it an

NP class decision problem than cannot be solved in the

polynomial time (it does not belong to the class P).

The next proposition sets the existence of an

EXPTIME-complete complexity language of the EXPTIME

complexity class (Proposition 3.1) in a convenient form, that

can be used for further compositions of other languages over

it.

Proposition 4.1. There is at least one infinite binary

sequence, that can be computed and decided as an

exptime-complete complexity.

 Proof.

 Let an exptime-complete decision problem A , that its

existence is guaranteed by Proposition 3.1 ,and its language

Lexp є EXPTIME. We will need for the sake of symbolic

convenience this language and decision problem , in the form

of a binary sequence. If Σ* is the set of all words of the binary

alphabet Σ of the language Lexp , then we give a linear order to

the binary alphabet Σ={0,1} 0<1, and then the inherited linear

lexicographic order to the set of words Σ*
 . Since Σ*

 is linearly

and well ordered with a first element and after excluding all

words with a left sequence of consecutive zeros (which is

obviously a polynomial time decision on the length of the

words) reducing to the set denoted by Σ** ,we fix the identity

map as an arithmetization with an 1-1 and on to

correspondence F: Σ**
 -> N to the set of natural numbers, so

that the language Lexp can be considered after this fixed

arithmetization identity mapping correspondence F, as a

subset of the natural numbers. So let Char(Lexp) : N->{0,1}

be the characteristic function of the set Lexp in the Natural

numbers encoded thus in a binary base. Then Char(Lexp)

consists of di, for i є N, and di is binary digit, that is equal to 0

or 1. A first finite 7-digits segment of it, would seem for

example like (0010110...). Since Lexp is an

exptime-complete decision problem Lexp є EXPTIME, its

characteristic function is computable with an

exptime-complexity too on the length of the binary words ,

and conversely any Turing machine computation of this

characteristic function and also infinite binary sequence

Char(Lexp) : N->{0,1}: consisting from di/ for all i є N, and di

is binary digit, that is equal to 0 or 1, is also a Turing machine

decision computation of the language Lexp. Therefore, there is

no polynomial time complexity computation of this infinite

binary sequence, as this would make EXPTIME=P and we

know that P ≠EXPTIME. For the sake of intuitive

understanding of the following arguments we call this binary

sequence “An exptime-compete binary DNA sequence” and

we denote it by DNAexp. This simplification from the original

exptime-complete decision problem and Language Lexp of Σ*

to the DNAexp of N can be considered also as a polynomial

time reduction of decision problem and languages Lexp ≤p

DNAexp (Lexp is p-reducible to DNAexp)(see Definition 2.1).

QED.

Proposition 4.2 (1
st
 solution) (3

rd
 Clay Millennium

problem) There is at least one decision problem language of

the class NP which is not also in the class P. Therefore, P ≠

NP.

Proof.

 In the next we show that there is a language Lnp belonging

to the class NP that cannot also belong to the class P without

making, the previous binary sequence in the proof of the

Proposition 4.1 called “exptime-complete binary DNA

sequence” and denoted by DNAexp, computable in polynomial

time complexity! To ensure that a language Lnp belongs to

the class NP it must hold that there is a polynomial-time

checkable relation R(x,y) and a natural number k, so that for

every word x, it holds that x belongs to the language Lnp if

and only if there is another word y, called “certificate” with

length |y|<=|x|k ,so that R(x,y) holds. Here by |x| we denote the

length of the word x, which is a natural number.

Now comes the intuition behind calling the binary

sequence DNAexp of the previous proof, a DNA sequence:

The trick here is to define this language denoted by Lnp with

the information encoded in the binary sequence DNAexp so

that, although a human with deterministic Turing machines

and exptime-time complexity can compute DNAexp and

therefore decide Lnp , no deterministic Turing machine within

polynomial-time complexity can compute and decide the Lnp.

In addition for every word x, if a human will give to such

deterministic machines the necessary information in the form

of a “certificate” y, then a deterministic Turing machine can

decide if x belongs or not to Lnp within polynomial-time

complexity.

We define such a language Lnp with the previous

requirements simply as follows:

For any word x є Σ* ,x єLnp if and only if , the word is an

initial word of the infinite binary sequence DNAexp and the

d|x| =1 , where d|x| is the |x|-order binary digit of the infinite

binary sequence DNAexp . And of course x does not belong to

Lnp if and only if this does not happen. In the original

publication of the proof in [9] Kyritsis C. it is not stated

https://doi.org/10.31871/WJRR.13.3.8 World Journal of Research and Review (WJRR)

 ISSN: 2455-3956, Volume-13, Issue-3, September 2021 Pages 21-26

 25 www.wjrr.org

explicitly the condition that ” the word is an initial word of

the infinite binary sequence DNAexp” but it is assumed

implicitly as it is apparent from the flow of the arguments,

and also as it is stated explicitly in the 2nd alternative proof.

 If we re-phrase the condition “d|x| =1”, as “DNAexp

acceptable” , then the definition can be rephrased as that a

word x belongs to the language Lnp if its length and itself is

DNAexp acceptable.

Then we define as “certificate” y of the word x, the finite

sequence y=(d1, d2,...,d|x|) , and as polynomial time checkable

relation R(x,y), and that R(x,y) holds , the fact that given x ,

and y, the last digit of y is 1 and the rest of the digits agree too.

Notice that here a human gives a lot of information to a

Turing machine that will check if x belongs or not to Lnp , in

the form of the |x|-length initial segment y of the infinite

binary sequence DNAexp that we know that no Turing

machine can compute within polynomial-time complexity.

That this relation R(x,y) is checkable in polynomial time

relative to the length |x| of x, is obvious as the Turing machine

with input x and y, will have only go through |x|-many steps to

check the last digit of y.

Now no deterministic Turing machine M can decide the

language Lnp , in other words decide given as input only the

word x (without its “certificate” y), if x єLnp or not. And this

is so, because if it exist such a deterministic Turing machine

M, then it could also decide (or compute) the digit d|x| of

DNAexp which we know that is not computable in

polynomial-time complexity. Thus Lnp does not belong to P,

and therefore P ≠ NP QED.

Proposition 4.3 (2
nd

 solution) (3
rd

 Clay Millennium

problem) There is at least one decision problem language of

the class NP which is not also in the class P. Therefore, P ≠

NP.It holds also that Np=EXTIME.

 Proof

We may define, in a simpler way, the language Lpasswords

(the index, passwords , is so as to follow the intuition of

password setting as in the Remark 4.3) as the set of all

 binary words, that are the successive n-initial segments of

the infinite binary sequence DNAexp. Then this language is

obviously (after Proposition 4.1) an EXPTIME-complete

language. Nevertheless the language Lpasswords also belongs to

 the class NP, because for each word w, of length |w|=n, a

“certificate” y of it is the word w itself y=w, and the

polynomial time checkable relation R(w,y) , y=w , is

 checkable in polynomial time, relative to the length |w|=n.

Notice that we have here one only word w for each

word-length n. But then from the Proposition 3.3

 NP=EXPTIME, and thus P ≠ NP. That NP=EXPTIME is

direct from the Proposition 3.3, and that the language

Lpasswords in the current proof of the current proposition, is

also EXPTIME-complete language , besides belonging in the

class NP. QED.

The next table 1 compares the two solutions

Table 1

Comparisons 1
st
 solution 2

nd
 solution

Length longer shorter

Use of proposition 4.1 Yes Yes

Proves also NP=EXPTIME No Yes

Remark 4.4 Notice that instead of taking, the

characteristic function DNAexp of an exptime-complete

language, we could have taken the characteristic function

DNAund of an undecidable language and we know that, there

is at least one, and repeat the definition of the Language Lnp ,

deriving thus an undecidable language , not belonging of

course to the class NP , which still it has a polynomial time

checkable relation, that nevertheless works only if a human

feeds it with a certificate y and there is not a Turing machine

that can decide it by taking as input the word x alone. This

confirms that in the definition of NP in, Definition 4.1, the

condition 1) is required. Alternatively we may prove the same

thing in a different way. By using the axiom of choice of the

ZFC set theory we may define for example an arbitrary

infinite sequence Lp of passwords pn , each one of length

exactly n, from the infinite set of the sets of words Σn of

length n. It is known that the axiom of choice of the ZFC set

theory, gives no information at all about what are the

elements of such a set, besides that each pn belongs to Σn . We

cannot expect that any such infinite choice Lp of n-length

passwords pn can be decided by a deterministic Turing

machine. If it was so, as such Turing machines are countable,

we order all such languages Lp,i ,iєN in a sequence and with

the diagonal method we define a new and different such

language L0 of passwords , differing to at least one password

from all those Lp,i , thus this L0 is undecidable (thus not

belonging of course to the class NP) . Still again there is a

polynomial-time checkable relation R(x,p|x|), which simply is

checking if x= p|x| ,so that for every word x, there is a

“certificate”, here the password p|x| , and x belongs to the

language L0 of passwords iff R(x,p|x|) holds.

IV. CONCLUSIONS

Sometimes great problems have relatively short and

elegant solutions provided we find the key-abstractions and

convenient context , symbols and semantics to solve them. It

requires also a certain power of thinking rather than

complexity of thinking, in areas where traditionally and

collectively it may not exist before. Even relatively simple

paths of reasoning, may be difficult to travel, if there is not, at

a certain point of them, the necessary “bridge”, that is the

necessary key-abstraction or the right conceptual “coins” of

symbols and semantics to exchange and convert. Here the

key-abstraction was to start from the class EXPTIME and an

EXPTIME-complete language of it, without specifying which

one instead starting from the class NP. If the P versus NP

problem is researched without a main strategy, that would

require a short proof, it might become a very complex

problem to solve. The main hidden guiding idea in

searching for such a simple proof, was that, what the

“arbitrary human-like free-will” of a non-deterministic

Turing machine as human-machine interactive software

(e.g. in password setting), can do in polynomial time,

cannot be done by a purely mechanical deterministic

Review of the Solutions of the Clay Millennium Problem about P ≠ NP =EXPTIME

 26 www.wjrr.org

Turing machine in polynomial time. In other words the

human-like non-deterministic arbitrariness in Turing

machines has an exponential nature. Since in my opinion

the Hierarchy Theorem is a deeper result than the P versus NP

problem, in principle there should exist a not much more

complicated proof of the P versus NP problem, compared to

the proof of the Hierarchy Theorem. The proof of the P

versus NP problem in the direction P ≠ NP, is supposed also

to mean that the standard practice of password setting in

the internet, is safe when the encryptions is not corrupted

and the publicly available hardware computational power is

the same for all .

REFERENCES

[1] Conway J.H. On numbers and games, Academic press 1976

[2] Cook, Stephen A. (1972). "A hierarchy for nondeterministic time

complexity". Proceedings of the fourth annual ACM symposium on

Theory of computing. STOC '72. Denver, Colorado, United States:

ACM. pp. 187–192

[3] Cook, Stephen (April 2000), The P versus NP Problem (PDF), Clay

Mathematics Institute site.

[4] Diduch Rodrigo Gilberto (2012), P vs NP, International Journal of

Computer Science and Network Security (IJCSNS) Volume 2, pp

165-167.

[5] Gram Seenil 2001 "Redundancy, Obscurity, Self- Containment &

Independence" by The 3rd International Conference on Information

and Communications Security (ICICS 2001) took place in Xian, China,

November 13-16, 2001. Proceedings of ICICS as Volume 2229 of

Springer Lecture Notes in Computer Science. Pages 495-501.

[6] Harry R. Lewis and Christos H. Papadimitriou Elements of the

Theory of Computation, Prentice-Hall, Englewood Cliffs, New Jersey,

1981, ISBN 0-13-273417-6.

[7] Hartmanis, J.; Stearns, R. E. (1 May 1965). "On the computational

complexity of algorithms". Transactions of the American Mathematical

Society. American Mathematical Society. 117:

285–306. . ISSN 0002-9947. JSTOR 1994208. MR 0170805.

[8] Kyritsis C. On the solution of the 3rd Clay Millennium problem. A short

and elegant proof that P ≠ NP in the context of deterministic Turing

machines and Zermelo-Frankel set theory. Proceedings of the first

ICQSBEI 2017 conference, Athens, Greece, pp 170-181

[9] Kyritsis C THE SOLUTION OF THE 3RD CLAY MILLENNIUM

PROBLEM. A SHORT PROOF THAT P ≠ NP=EXPTIME IN THE

CONTEXT OF ZERMELOFRANKEL SET THEORY. International

Journal of Pure and Applied Mathematics Volume 120 No. 3 2018,

pp497-510 ISSN: 1311-8080 (printed version); ISSN: 1314-3395

(on-line version) url:http://www.ijpam.eu doi:

10.12732/ijpam.v120i3.1

[10] Luca Trevisan, Notes on Hierarchy Theorems, U.C. Berkeley.

[11] John C. Martin (1997). Introduction to Languages and the Theory of

Computation (2nd ed.). McGraw-Hill. ISBN 0-07-040845-9.

[12] Papadimitriou Christos (1994). Computational Complexity.

Addison-Wesley. ISBN 0-201-53082-1.

[13] Rustem Chingizovich Valeyev 2013 The Lower Border of Complexity

of Algorithm of the Elementary NP-Complete Task (The Most

Condensed Version) World Applied Sciences Journal 24 (8):

1072-1083, 2013 ISSN 1818-4952 © IDOSI Publications, 2013.

[14] Stanislav, Žák (October 1983). "A Turing machine time

hierarchy". Theoretical Computer Science. Elsevier Science

B.V. 26 (3): 327–333.

[15] A. A. Tsay, W. S. Lovejoy, David R. Karger, Random Sampling in Cut,

Flow, and Network Design Problems, Mathematics of Operations

Research, 24(2):383–413, 1999.

[16] Ivanov Viktor V. 2014, A short proof that NP is not P. International

Journal of Pure and Applied Mathematics IJPAM pp 81-88 .

[17] Woeginger GJ (2016) The P versus NP page

,https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

[18] Yannakakis M. 1998 "Expressing combinatorial optimization

problems by linear programs" Proceedings of STOC 1988, pp.

223-228.

https://en.wikipedia.org/wiki/Stephen_Cook
https://en.wikipedia.org/wiki/Stephen_Cook
http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
https://en.wikipedia.org/wiki/Juris_Hartmanis
https://en.wikipedia.org/wiki/Richard_E._Stearns
https://en.wikipedia.org/wiki/Transactions_of_the_American_Mathematical_Society
https://en.wikipedia.org/wiki/Transactions_of_the_American_Mathematical_Society
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0002-9947
https://en.wikipedia.org/wiki/JSTOR
https://www.jstor.org/stable/1994208
https://en.wikipedia.org/wiki/Mathematical_Reviews
https://www.ams.org/mathscinet-getitem?mr=0170805
https://en.wikipedia.org/wiki/Christos_Papadimitriou
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-53082-1
https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

