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 

Abstract— In this paper I review the decisive proofs that P ≠ 

NP, and    NP=EXPTIME   in the context of the 

Zermelo-Frankel set theory and deterministic Turing machines. 

The results of these proofs   definitely solve the 3rd Clay 

Millennium Problem about P versus NP, in a simple and 

transparent away that the general scientific community, but 

also the experts of the area, can follow, understand and 

therefore become able to accept. So far the solutions of this 

famous problem seem that they have not been noticed by the 

wider relevant scientific community. The main purpose of this 

paper is to make widely known the solutions of the 3rd Clay 

Millennium problem “P versus NP” to the relevant scientific 

community. 

Index Terms—3rd Clay Millennium problem, 

EXPTIME-complete problems, NP-complexity, P-complexity  

Mathematical Subject Classification: 68Q15.  

 

I. INTRODUCTION 

Two solution of the famous P versus NP problem has been 

published in [9] Kyritsis C and in this paper we review, 

discuss and present the solutions. In the history of 

mathematics, it is known that difficult problems that have 

troubled a lot the mathematicians, turned out to have different 

proofs one simple and one very complex. Such an example is 

if the general 5th order polynomial equation can be solved 

with addition, subtraction, multiplication, division and 

extraction of radicals starting from the coefficients. The 

famous mathematician Niels Henrik Abel who gave a very 

simple proof.  On the other hand, the proof of the same, by    

the E. Galois theory, is a whole book of dozens of pages!  

And a famous mathematician once said that “Once a proof 

is known to a mathematical problem, then immediately after 

it becomes trivial!” 

It is the same with the solution of the P versus NP problem in 

this paper. We will utilize in our proofs, the key abstraction of 

the existence of an EXPTIME complete language, (it is 

known that it exists) without specifying which one, which 

will simplify much the arguments.  Then we synthesize other 

languages and arguments over it, that will solve the problem. 

A second issue that is important to mention, is a statement, 

that is usually attributed to the famous mathematician Yuri 

Manin, that “A correct proof in mathematics is considered 

a proof only if it has passed the social barrier of being 

accepted and understood by the scientific community and 

published in accepted Journals” 

Passing the obstruction of the social barrier, sometimes is 

 
Konstantinos E. Kyritsis Dept. Accounting-Finance University of 

Ioannina, Greece  

 

more difficult than solving the mathematical problem itself! 

We must notice here that the P versus NP problem, is in 

fact a set of different problems within different axiomatic 

systems. In the context of what axiomatic system is the 

Complexity Theory of Turing machines? Since the 

complexity theory of Turing machines requires entities like 

infinite sets of words then it is in the context of some 

axiomatic set theory, together with the axiom of infinite.  So 

we notice that the next are different problems: 

1) The P versus NP problem in the Zermelo-Frankel 

axiomatic system of sets without the axiom of 

choice and this axiomatic system formulated in the 

2rd order formal languages. 

2) The P versus NP problem in the Zermelo-Frankel 

axiomatic system of sets with the axiom of choice 

and this axiomatic system formulated in the 2rd 

order formal languages. 

3) Etc 

We might try to think of the P versus NP problem within 

the context of the axiomatic system of Peano Arithmetic with 

or without the axiom of induction and within second order 

formal languages. But to do so, we must carefully define, 

what additional axioms or definitions give the existence of 

infinite subsets of natural numbers that are used in the 

Complexity Theory.   

 

The main hidden guiding idea in searching for such a 

simple proof, was that what the “arbitrary human-like 

free-will” of a non-deterministic Turing machine as 

human-machine interactive software (e.g. in password 

setting), can do in polynomial time cannot be done by a 

purely mechanical deterministic Turing machine in 

polynomial time.  (See also beginning of paragraph 4) After 

the Key-abstraction mentioned above I had to find the right 

simple argumentsto make a valid proof of this idea. The proof 

of the P versus NP problem in the direction P ≠ NP, is 

supposed also to mean that the standard practice of 

encryption in the internet, is safe.  

We notice also that the P versus NP:  

1) It is a difficult problem, that has troubled the 

scientific community for some decades 

2) It may have simple proofs of a few paragraphs, 

hopefully not longer than the proof of the Time 

Hierarchy theorem, which seems to be a deeper 

result. 

3) But it can also have very lengthily and complex 

proofs, that may take dozens of pages.  

4) There many researchers (more than 5 of them) that have 

claimed to have solved it, either as P=NP, or as P ≠ NP, and 
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even as suggestion that neither are provable, but only a 

handful of them seem to have been able to pass the 

preliminary social barrier and publish their solution in 

conferences or Journals with referees. The rest of them have 

published online only preprints (see e.g. the [17] P versus NP 

page). It seems to me though that it is not probable that all of 

them have correct solutions. Especially in the direction 

P=NP, there is a common confusion and mistake, that has 

been pointed out by Yannakakis M. [18]. Furthermore, this 

confusing situation has contributed so that although there are 

publications in respectable Journals, the experts and the 

scientific community does not seem of being able to decide if 

the P versus NP problem has been solved or not. This is 

reasonable, as there are proofs of close to 100 pages, and no 

average reader would feel comfortable to go through them, 

and decide for himself if there a flaw or error somewhere. 

Still it is better to have published results than non-published, 

and then let the large number of readers to try to find errors or 

flaws in the solutions if there are any.  

 

So here comes the need of a more challenging problem: 

Not only to solve the P versus NP problem, but also solve it in 

such an simple, elegant and short way, so that the researchers 

will know a decisive proof that they can understand and 

control that P ≠ NP or not, so short that anyone familiar with 

the area, would discover any flaw or error if it existed. 

 

This is I believe the value of the present paper that provides 

such a proof in the context of the Zermelo-Frankel set theory 

(we do not use the axiom of choice), formulated e.g. within 

2nd order formal languages.  

 

What this proof is or is not: 

 

1) It does not introduce new theoretical concepts in 

computational complexity theory so as to solve 

the P versus NP. 

2) It does not use relativization and oracles 

3) It does not use diagonalization arguments, 

although the main proof, utilizes results from 

the time hierarchy theorem 

4) It is not based on improvements of previous 

bounds of complexity on circuits 

5) It is proved with the method of counter-example. 

Thus it is transparent short and “simple”. It 

takes any Exptime-complete DTM decision 

problem, and from it, it derives in the context of 

deterministic Turing machines a decision 

problem language which it is apparent that it 

belongs in the    NP class decision problems 

while it does not belong the class P of decision 

problems.  

6) It seems a “simple” proof because it chooses the 

right context to make the arguments and 

constructions and the key-abstraction 

mentioned above. So it helps  the scientific 

community to accept that this 3rd Clay 

Millennium problem has already been solved.  

In the paragraph 4, we give an advanced, full proof that P ≠ 

NP, in the standard context of deterministic Turing machines, 

solving thus the 3rd Clay Millennium problem. 

 

 

II.  PRELIMINARY CONCEPTS, AND THE 

FORMULATION OF THE 3RD
 CLAY MILLENNIUM 

PROBEM, P VERSUS NP. 

 

In this paragraph, for the sake of the reader, we will just 

mention the basics to understand the formulation of the 3rd 

Clay Millennium problem. The official formulation is found 

in [3] (Cook, Stephen (April 2000), The P versus NP 

Problem (PDF), Clay Mathematics Institute site). Together 

with an appendix where there is concise definition of what are 

the Deterministic Turing machines, that is considered that 

they formulate, in Computational Complexity theory , the 

notion and ontology of the software computer programs.  

In the same paper are also defined the computational 

complexity classes P, NP.  

The elements of the classes P, NP etc strictly speaking are 

not only sets of words denoted by L, that is not only 

languages, but also for each such set of words or language L 

at least one DTM , M that decides it, in the specified 

complexity so they are pairs (L,M). Two such pairs (L1, M1) 

(L2, M2) are called equidecidable if  L1 = L2  although it may 

happen that M1 ≠ M2 . E.g. if the complexity of M1 is 

polynomial-time while that of M2  exponential-time choosing 

the first pair instead of the second means that we have turned  

a high complexity  problem to a  feasible low complexity 

problem.  

The definition of other computational complexity classes 

like EXPTIME etc. can be found in standard books like 

[6],[11],[12]. In the official formulation [3] there is also the 

definition of the concept of a decision problem language in 

polynomial time reducible to another decision problem 

language. 

Based on this definition it is defined that an 

EXPTIME-complete decision language of EXPTIME is 

EXPTIME-complete, when all other decision problems 

languages of EXPTIME have a polynomial time reduction to 

it. Here is the exact definition 

Definition 2.1 Suppose that Li is a language over all 

words Σi , i = 1, 2. Then L1 ≤p  L2 (L1  is p-reducible to L2) 

iff there is a polynomial-time computable function f : Σ1 -> Σ2 

such that x є L1 if and only if  f(x) є L2, for all x є Σ1. 

In the same books [6],[10],[11] can be found the concepts 

and definitions of NP-complete and EXPTIME-compete 

decision problems. See also [7], [12] where its proved that 

specific decision problems are EXPTIME-complete.  

For simplicity we will consider here only binary alphabets 

{0,1} and sets of binary words Σ.  

III.  WELL KNOWN RESULTS THAT WILL BE USED. 

  

We will not use too many results from the computational 

complexity theory for our proof that P ≠ NP. 

A very deep theorem in the Computational Complexity is 

https://en.wikipedia.org/wiki/Stephen_Cook
http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf
http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf
http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
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the Time Hierarchy Theorem (see e.g. 

[6],[11],[12],[10],[14]. This theorem gives the existence of 

decision problems that cannot be decided by any other 

deterministic Turing machine in less complexity than a 

specified. 

Based on this theorem, it is proved that: 

 

Proposition 3.1 There is at least one EXPTIME-complete 

decision problem, that cannot be decided in polynomial time, 

thus P ≠EXPTIME. 

 

The next two propositions indicate what is necessary to 

prove in order to give the solution of the P versus NP 

problem. 

Proposition 3.2 If the class NP contains a language L 

which cannot be decided with a polynomial time algorithm, 

then P ≠ NP. 

Proposition 3.3 If the class NP contains a language L 

which is EXPTIME complete, then NP=EXPTIME. 

 

IV THE SOLUTION: P ≠ NP=EXPTIME IN THE 

CONTEXT OF DETERMINSITIC TURING MACHINES 

 

We will prove in this paragraph that P ≠ NP in the context 

of second order formal language of the Zermelo-Frankel set 

theory.  

Since we are obliged to take strictly the official 

formulation of the problem, rather  than text books about it, 

we make the next clarifications.  

We will use the next conditions for a Language to be in the 

class NP, as stated in the official formulation of the P versus 

NP problem (see [3] Cook, Stephen (April 2000), The P 

versus NP Problem (PDF), Clay Mathematics Institute.). 

We denote by Σ*  all the words of an alphabet Σ. 

 

Definition 4.1 A language L of binary words is in the class 

NP if and only if the next conditions hold 

1) There is a deterministic Turing machine M that 

decides L. In other words for any word x in L, 

when x is given as input to M, then M accepts it 

and if x does not belong to L then M rejects it. 

In symbols: Ǝ a deterministic Turing machine M, such that 

ⱯxєΣ*, x is either accepted or rejected by M and if M accepts 

x → xєL, and if M reject x → x ɇL 

2) There is a polynomial-time checkable relation 

R(x,y), and a natural number k of N, so that for 

every word x , x belongs to L if and only if there 

is a word y , with |y|<=|x|k , and R(x,y) holds. 

In symbols:Ǝ relation R which is polynomial-time 

checkable ,and Ǝ kєN, such that ⱯxєΣ*,  

xєL↔ (Ǝ yє Σ*,   |y|<=|x|k  and  R(x,y) holds). 

 

Remark 4.1. In the official statement of the P versus NP 

problem (see [3]  Cook, Stephen (April 2000), The P versus 

NP Problem (PDF), Clay Mathematics Institute) the 

condition 1) is not mentioned. But anyone that has studied 

complexity theory, knows that it is required. The condition 2) 

alone cannot guarantee that there is a deterministic Turing 

machine that decides the language., as the polynomial 

checkable relation works only if we provide it with certificate 

y, and not with only  x as input. Indeed we shall see below at 

the end of the proposition in Remark 4.4, that there is even 

an undecidable language L , for which nevertheless there is a 

polynomial checkable relation R, so that condition R is 

satisfied.  The languages of NP cannot be semidecidable (or 

undecidable). The NP class is also defined as  NP =∪kєN 

NTIME(nk), but this definition is also in the context of 

non-deterministic Turing Machines. The situation with P, is 

more clear, because the mere requirement that a language of P 

is of polynomial time complexity as it is standard to define it , 

involves already that there exist a deterministic Turing 

machines that for every input word, it halts within polynomial 

time steps and either accepts or rejects it, therefore it decides 

it. And not only that is simply the language of a deterministic 

Turing machine , and therefore maybe only semi-decidable.  

Remark 4.2. Notice that in the condition 2) the k depends 

on the relation R and is not changing as the certificate y 

changes.  In other words k does not depend on y and we did 

not state the next: 

There is a polynomial-time checkable relation R(x,y), so 

that for every word x , x belongs to L if and only if there is a 

word y , and k in N ,with |y|<=|x|k , and R(x,y) holds. In 

symbols: Ǝ relation R which is polynomial-time checkable , 

such that ⱯxєΣ*, xєL↔ (ƎyєΣ* and ƎkєN such that |y|<=|x|k   

and R(x,y) holds). 

In the official statement of the P versus NP problem (see 

[3]  Cook, Stephen (April 2000), The P versus NP 

Problem (PDF), Clay Mathematics Institute) this is not made 

clear, in the natural language that the definition is stated. But 

that k does not depend on the certificate, but on the 

polynomial checkable relation becomes clear, when we look 

at the proof in any good textbook about complexity theory, of 

how a non-deterministic Turing machine which runs in 

polynomial time, can define a deterministic Turing machine 

with a polynomial time checkable relation, which is 

considered that replaces it.  

 

 

Remark 4.3: My main intuition to find a proof that   

P ≠ NP=EXPTIME. The password setting.  

Let us make the next thought-experiment: Imagine a 

human Mr H who has available infinite time, and has infinite 

mental capabilities. No the world asks Mr H to set passwords 

on all lengths of words! So Mr H sets a password p(l) for 

words of length l=1,2, 3,...n,...etc. Next let us imagine the 

problem of finding the password of length say x=153. Mr H 

has an arbitrary free will and he is honest not to give his 

passwords, in addition Mr H has provided us with a device 

D(l) for each length l, that unlocks if we give to it the 

password p(l), so we will know if w is the password or not. So 

the only way to discover if particular word w of length |w|= 

l=153 is the password p(153) or not, it is to search all the 

words of length l in an exhaustive way and try them on the 

device D(l). This is of course a an EXPTIME complexity 

problem, that cannot be reduced to a polynomial time 

problem. Therefore, finding the language LP of passwords 

p(l) of Mr H, cannot be a problem of polynomial time 

complexity. If in addition, we assume that the blind 
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exhaustive search of all words of length l, is an 

EXPTIME-complete complexity problem on the initial data l, 

then finding the language of passwords of Mr H is also an 

EXPTIME-complete problem. Nevertheless, for each word w 

of length l, the Device(l) is the polynomial time on the length 

l, checkable relation (certificate for each word w), that can 

decide if w is a password or not, therefore the problem of 

finding the language L, is in the NP class complexity. But the 

above then after Propositions 3.2 and 3,3, indicate that P ≠ 

NP=EXPTIME. 

Now this intuitive idea, is obviously not a formal proof at 

all, as we are taking about “human Mr H”, “arbitrary human 

free will” etc.  Besides we are taking about the complexity of 

problems here rather than the complexity of languages. How 

can we turn this intuition to strict and formal proof, without 

using oracles, or non-formal arguments? The solution is the 

key-abstraction that I mentioned in the Introduction, that is to 

start with the existence of an EXPTIME-complete 

complexity language, that we know it exists, without 

specifying which one. Then define other languages over it 

and make simple arguments that solve to P versus NP 

problem.   

So the strategy to solve the P versus NP problem, is quite 

simple: We will start with an exptime-complete decision 

problem and its language Lexp  and we will derive from it an 

NP class decision problem than cannot be solved in the 

polynomial time (it does not belong to the class P).  

 

The next proposition sets the existence of an 

EXPTIME-complete complexity language of the EXPTIME 

complexity class (Proposition 3.1) in a convenient form, that 

can be used for further compositions of other languages over 

it. 

Proposition 4.1. There is at least one infinite binary 

sequence, that can be computed and decided as an  

exptime-complete   complexity. 

 Proof. 

  Let  an exptime-complete decision problem A , that its 

existence is guaranteed by Proposition 3.1 ,and its  language 

Lexp  є EXPTIME. We will need for the sake of symbolic 

convenience this language and decision problem , in the form 

of a binary sequence. If  Σ* is the set of all words of the binary 

alphabet Σ of the language Lexp , then we give a linear order to 

the binary alphabet Σ={0,1} 0<1, and then the inherited linear 

lexicographic order to the set of words Σ*
 . Since Σ*

  is linearly 

and well ordered with a first element and after excluding all 

words with a left sequence of consecutive zeros (which is 

obviously a polynomial time decision on the length of the 

words) reducing to the set denoted by Σ** ,we fix the identity 

map as  an arithmetization  with an 1-1 and on to 

correspondence F: Σ**
 -> N to the set of natural numbers, so 

that the language Lexp  can be considered after this fixed 

arithmetization identity mapping correspondence F, as a 

subset of the natural numbers.  So let Char(Lexp) : N->{0,1} 

be the characteristic function of the set Lexp in the Natural 

numbers encoded thus in  a binary base. Then Char(Lexp) 

consists of di, for  i є N, and di is binary digit, that is equal to 0 

or 1. A first finite 7-digits segment of it, would seem for 

example like (0010110...).  Since Lexp  is an 

exptime-complete decision problem Lexp  є EXPTIME, its 

characteristic function is computable with an 

exptime-complexity too on the length of the binary words , 

and conversely any Turing machine computation of this 

characteristic function and also infinite  binary sequence 

Char(Lexp) : N->{0,1}: consisting from di/ for all i є N, and di 

is binary digit, that is equal to 0 or 1, is also a Turing machine   

decision computation of the language Lexp. Therefore, there is 

no polynomial time complexity computation of this infinite 

binary sequence, as this would make EXPTIME=P and we 

know that P ≠EXPTIME. For the sake of intuitive 

understanding of the following arguments we call this binary 

sequence “An exptime-compete binary DNA sequence” and 

we denote it by DNAexp. This simplification from the original 

exptime-complete decision problem and Language Lexp  of Σ* 

to the DNAexp  of N can be considered also as a polynomial 

time reduction  of decision problem and languages Lexp ≤p 

DNAexp (Lexp is p-reducible to DNAexp)(see Definition 2.1). 

QED. 

 

Proposition 4.2 (1
st
 solution) (3

rd
 Clay Millennium 

problem) There is at least one decision problem language of 

the class NP which is not also in the class P. Therefore, P ≠ 

NP. 

 

Proof.  

 In the next we show that there is a language Lnp  belonging 

to the class NP  that cannot also belong to the class P without 

making, the previous binary sequence in the proof of the 

Proposition 4.1 called “exptime-complete binary DNA 

sequence” and denoted by DNAexp, computable in polynomial 

time complexity! To ensure that a language Lnp   belongs to 

the class NP it must hold that there is a polynomial-time 

checkable relation R(x,y) and a natural number k, so that for 

every word  x, it holds that x belongs to the language Lnp  if 

and only if there is another word y, called “certificate” with 

length |y|<=|x|k ,so that R(x,y) holds. Here by |x| we denote the 

length of the word x, which is a natural number.  

Now comes the intuition behind calling the binary 

sequence DNAexp of the previous proof, a DNA sequence: 

The trick here is to define this language denoted by Lnp with 

the information encoded in the binary sequence DNAexp so 

that, although a human with deterministic Turing machines 

and exptime-time complexity can compute DNAexp and 

therefore decide Lnp , no deterministic  Turing machine within 

polynomial-time complexity can compute and decide the Lnp. 

In addition for every word x,   if a human will give to such 

deterministic machines the necessary information in the form 

of a  “certificate” y, then a deterministic Turing machine can 

decide if x belongs or not to Lnp within polynomial-time 

complexity.  

We define such a language Lnp with the previous 

requirements simply as follows: 

For any word x є Σ* ,x єLnp  if and only if , the word is an 

initial word of the infinite  binary sequence DNAexp and the 

d|x| =1 , where  d|x| is the |x|-order binary digit  of the infinite  

binary sequence DNAexp . And of course x does not belong to 

Lnp  if and only if this does not happen. In the original 

publication of the proof in [9]      Kyritsis C. it is not stated 
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explicitly the condition that ” the word is an initial word of 

the infinite  binary sequence DNAexp” but it is assumed 

implicitly as it is apparent from the flow of the arguments, 

and also as it is stated explicitly in the 2nd alternative proof.  

 If we re-phrase the condition “d|x| =1”, as “DNAexp  

acceptable” , then the definition can be rephrased as that a 

word x belongs to the  language Lnp  if its length and itself is 

DNAexp  acceptable.  

Then we define as “certificate” y of the word x, the finite 

sequence y=(d1, d2,...,d|x|) , and as polynomial time checkable 

relation R(x,y), and  that R(x,y) holds , the fact that given x , 

and y, the last digit of y is 1 and the rest of the digits agree too. 

Notice that here a human gives a lot of information to a 

Turing machine that will check if x belongs or not to Lnp , in 

the form of the |x|-length initial segment y of the infinite 

binary sequence DNAexp  that we know that no Turing 

machine can compute within polynomial-time complexity.  

That this relation R(x,y) is checkable in polynomial time 

relative to the length |x| of x, is obvious as the Turing machine 

with input x and y, will have only go through |x|-many steps to 

check the last digit of y.  

Now no deterministic Turing machine M can decide the 

language Lnp , in other words decide given as input only the 

word x (without its “certificate” y), if x єLnp  or not. And this 

is so, because if it exist such a deterministic Turing machine 

M, then it could also decide (or compute) the digit d|x| of 

DNAexp which we know that is not computable in 

polynomial-time complexity. Thus Lnp does not belong to P, 

and therefore P ≠ NP      QED. 

Proposition 4.3 (2
nd

 solution) (3
rd

 Clay Millennium 

problem) There is at least one decision problem language of 

the class NP which is not also in the class P. Therefore, P ≠ 

NP.It holds also that Np=EXTIME.  

 

 Proof 

We may define, in a simpler way, the language Lpasswords  

(the index, passwords , is so as to follow the intuition of 

password setting as in the Remark 4.3) as the set of all 

 binary  words, that are the successive n-initial segments of 

the infinite binary  sequence DNAexp.  Then this language is 

obviously  (after Proposition 4.1) an  EXPTIME-complete 

language. Nevertheless the language Lpasswords   also belongs to 

 the class NP,  because for each word w, of length |w|=n, a 

“certificate” y of it is the  word w itself y=w, and the 

polynomial time checkable relation R(w,y) , y=w , is 

 checkable in polynomial time, relative to the length |w|=n. 

Notice that we have here  one only word w for each 

word-length n.  But then from the  Proposition 3.3

 NP=EXPTIME, and thus  P ≠ NP.  That NP=EXPTIME is 

direct from  the Proposition 3.3, and that the language 

Lpasswords    in the current  proof of the current proposition, is 

also EXPTIME-complete language , besides belonging in the 

class NP.                               QED.  

The next table 1 compares the two solutions  

Table 1 

Comparisons 1
st
 solution 2

nd
 solution  

Length longer shorter 

Use of proposition 4.1 Yes Yes 

Proves also NP=EXPTIME No  Yes 

Remark 4.4 Notice that instead of taking, the 

characteristic function DNAexp of an exptime-complete 

language, we could have taken the characteristic function 

DNAund of an undecidable language and we know that, there 

is at least one, and repeat the definition of the Language Lnp , 

deriving thus an undecidable language , not belonging of 

course to the class NP , which still it has a polynomial time 

checkable relation, that nevertheless works only if a human 

feeds it with a certificate y and there is not  a Turing machine 

that can decide it by taking as input the word x alone. This 

confirms that in the definition of NP in, Definition 4.1, the 

condition 1) is required. Alternatively we may prove the same 

thing in a different way. By using the axiom of choice of the 

ZFC set theory we may define for example an arbitrary 

infinite sequence Lp of passwords pn , each one of length 

exactly n, from the infinite set of the sets of words Σn of 

length n. It is known that the axiom of choice of the ZFC set 

theory, gives no information at all about what are the 

elements of such a set, besides that each pn belongs to Σn . We 

cannot expect that any such infinite choice Lp  of n-length 

passwords pn can be decided by  a  deterministic Turing 

machine. If it was so, as such Turing machines are countable, 

we order all such languages Lp,i ,iєN in a sequence and with 

the diagonal method we define a new and different such 

language L0 of passwords , differing to at least one password 

from all those Lp,i , thus this L0 is undecidable (thus not 

belonging of course to the class NP) . Still again there is a 

polynomial-time checkable relation R(x,p|x|), which simply is 

checking if x= p|x| ,so that for every word x, there is a  

“certificate”, here the password  p|x| , and x belongs to the 

language L0 of passwords iff R(x,p|x|) holds.  

IV.         CONCLUSIONS  

Sometimes great problems have relatively short and 

elegant solutions provided we find the key-abstractions and 

convenient context , symbols and semantics to solve them. It 

requires also a certain power of thinking rather than 

complexity of thinking, in areas where traditionally and 

collectively it may not exist before. Even relatively simple 

paths of reasoning, may be difficult to travel, if there is not, at 

a certain point of them, the necessary “bridge”, that is the 

necessary key-abstraction or the right conceptual “coins” of 

symbols and semantics to exchange and convert. Here the 

key-abstraction was to start from the class EXPTIME and an 

EXPTIME-complete language of it, without specifying which 

one instead starting from the class NP. If the P versus NP 

problem is researched without a main strategy, that would 

require a short proof, it might become a very complex 

problem to solve. The main hidden guiding idea in 

searching for such a simple proof, was that,  what the 

“arbitrary human-like free-will” of a non-deterministic 

Turing machine as human-machine interactive software 

(e.g. in password setting), can do in polynomial time, 

cannot be done by a purely mechanical deterministic 
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Turing machine in polynomial time. In other words the 

human-like non-deterministic arbitrariness in Turing 

machines has an exponential nature.   Since in my opinion 

the Hierarchy Theorem is a deeper result than the P versus NP 

problem, in principle there should exist a not much more 

complicated proof of the P versus NP problem, compared to 

the proof of the Hierarchy Theorem. The proof of the P 

versus NP problem in the direction P ≠ NP, is supposed also 

to mean that the standard practice of password setting in 

the internet, is safe when the encryptions is not corrupted 

and the publicly available hardware computational power is 

the same for all .  
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