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 

Abstract— This paper deals with an analysis of the different 

behaviors existing between ladder networks (LN) terminated 

and not terminated by the characteristic impedance Z0. The 

main purpose of this work is to find, in both cases, links with the 

golden ratio  and, as a consequence, with Fibonacci numbers. 

Results of some simulations related to the determination of 

impedances, node voltages and branch currents are given in 

order to underline approximation effects on the node voltages 

and branch currents related to both the presence and absence of 

Z0.This study has been firstly applied to R-R ladder networks 

but it is here extended to consider other kinds of LNs, having 

other types of single cells such as C-C ; L-L whose characteristic 

impedances have also been determined. 

Double resistive LN have also been investigated for which 

impedances in any cell, currents in any branch and voltages in 

any node have been determined  in the two cases of presence 

and absence of the characteristic impedance and with different 

ratio between longitudinal and transversal impedances. This 

study has another not less relevant aim: find one of the possible  

platform for the modelization of biosystems like DNA and RNA, 

because these structures even if much more complex look like a 

LN 

 
Index Terms—Passive ladder Network, DNA,RNA .  

 

I. INTRODUCTION 

Passive ladder networks made by a number of single cells 

having both longitudinal and transversal impedances have 

been studied for a long time [1-6] due to their versatility in 

representing a good model for mechanical, chemical, thermal 

and electronic systems and also because they were frequently 

employed in passive filters [7,8]. Their interest to day is still 

alive due to the new implications in analog neural networks 

and in new promising devices such as multi gate MOSFET 

for multi-sensing applications, where a possible model for 
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both the inversion and depletion regions falls into these 

ladder networks. Furthermore, we cannot exclude in a near 

future their possible implications in the study of both the 

electric behavior of both DNA and RNA structures[9], and 

related aspects of epigenomics. This paper, on the other hand, 

considers these kinds of networks from another viewpoint: 

the search of the presence of links with Fibonacci numbers. In 

many cases these famous numbers are present as expression 

of impedances, voltages, currents and may facilitate the rapid 

calculation of their amplitudes[4]. This paper in particular 

compares,as a new investigation, resistive LNs with and 

without their characteristic impedance. This last, used as 

termination of the finite LN, allows the R-R finite LN to be 

treated as a ladder network having an infinite number of 

single cells.These considerations are here extensively applied 

to R-R LNs, and to a less extent to both C-C, L-L LNs.  

II. DETERMINATION OF THE CHARACTERISTIC IMPEDANCES 

IN A FEW TYPES OF LADDER NETWORKS. 

Let us first determine thecharacteristic impedance of a LN 

formed by a number N of identical cells directly coupled each 

other and characterized by a longitudinal impedance  kZ1 and 

a transversal impedance lZ2, as shown in fig.l,where k and 

lare positive and real numbers. 

 
Fig.l - Ladder network with impedances kZ and LZ 

 

We introduce here a definition of the characteristic 

impedance Z0 useful for our investigation. 

A simple remark suggests that the input impedance of the 

infinite LN cannot be changed if we extract a single cell: then 

we assume that the input impedance and the matching 

terminated impedance are identical. 

To this first purpose, let us consider first a single cell, 

adapted by 𝑍0, as in Fig. 2-a),  
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Fig. 2-a) Single cell of a ladder network terminated by the 

characteristic impedance 𝑍0. 

 

Therefore,Z0is that impedance value satisfying the 

following equation: 

𝑍0 = 𝑘𝑍1 + 𝑙𝑍2 ∥ 𝑍0                                                             (1) 

whichgives: 

𝑍0
2 − 𝑘𝑍1𝑍0 − 𝑘𝑙𝑍1𝑍2 = 0                                                     (2) 

whose two solutions are expressed by: 

 

Zo=

      𝑘𝑍1

 1± 1+4
𝑙

𝑘

𝑍2
𝑍1

 

2
                                                                                                                                              (3) 

 
Fig. 2-b) Two cells of a ladder network terminated by the 

characteristic impedance𝑍0. 

It is easy to prove the consistency of the definition 

expressed by (1). In fact, the second order equation (2) is also 

obtained from fig.2-b) and also from LNs (fig. l) formed by 

any number of cells. This result simplifies our considerations: 

the presence of 𝑍0 allow us to deal with a discrete and infinite 

transmission line. 

With reference to the relationship (3), Z0 will always have 

two solutions, no matter how many cells are considered as it 

is easy to prove! One of these solutions is positive and will be 

the only one taken into account in the following. 

As a remark, we notice that, if we apply the same 

procedure to a continuous transmission line represented as a 

single cell LN shown in fig. 3, we obtain: 

 

 
 

Fig.3 Single cell for a continuous transmission line made 

by infinitesimal longitudinal resistor and transversal 

conductance 

𝑍0 = 𝑅1 ∙ 𝑑𝑥 +  
𝑍0𝑅2

𝑍0 ∙𝑑𝑥+𝑅2
                (4) 

or: 

𝑍0
2 ∙ 𝑑𝑥 − 𝑍0𝑅1 ∙ 𝑑𝑥2 − 𝑅1𝑅2 ∙ 𝑑𝑥 = 0                   (5) 

 

Leaving out the second order term dx2, we have: 

 

𝑍0 =  𝑅1𝑅2 = 𝑅      if R1 = R2                                           (6) 

 

as we can obtain by integration of the distributed line 

differential equation when the model of fig.3 is taken into 

account. 

This result is quite different to that obtained above for the 

discrete line and given by (3). 

So we point out that the intrinsic difference between the 

continuous line and the discrete one is based on the second 

order infinitesimal missing term. 

Indeed the feature that a discrete line is infinite does not  

imply that the line becomes distributed. 

III. CASE OF L-L AND C-C  LN 

Fig. 4 shows a  L-L single cell closed with its characteristic 

impedance Zo 

 

 
Fig. 4 - A L-L single cell closed by its characteristic 

impedance Z0 

 

As before the adopted procedure allow us in the Laplace 

domain (s=jω) the determination of Z0: 

 

𝑍0 = 𝑠 ∙ 𝑚𝐿 +
𝑠 ∙ 𝑚𝐿 ∙ 𝑍0

𝑠 ∙ 𝑚𝐿 + 𝑍0
 

 

whose positive solution is: 

𝑍0 = 𝑠 ∙ 𝑚𝐿 ∙
1 +  1 + 4

𝑛
𝑚

2
 

 

In the particular case, when 𝑛 =  𝑚,we have 𝑍𝑜 =  𝑠𝐿𝜙 

Where 𝜙 is the golden ratio that will be discussed later. 

Let us consider now the following single cell made by only 

two capacitors (fig.5) 

 
 

Fig.5:A C-C single cell closed on its characteristic 

impedance Z0 
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For this circuit we obtain: 

𝑍0 =
1

𝑠 ∙ 𝑚𝐶
+

1
𝑠 ∙ 𝑛𝐶 ∙ 𝑍0

1
𝑠 ∙ 𝑛𝐶 + 𝑍0

 

Whose positive solution is: 

𝑍0 =
1

𝑠 ∙ 𝑚𝐶
∙

1 +  1 + 4
𝑚
𝑛

2
 

 

In the particular case, when 𝑛 =  𝑚 we have Z0= =ϕ/smC. 

IV. CONNECTIONS AMONG LNS, THE ―GOLDEN SECTION‖ 

AND THE FIBONACCI SEQUENCE. 

Let us consider a LN made by all equal longitudinal 

resistors kR  and transversal resistors lR, whose single cell is 

shown in Fig.6 with the impedance Z0 representing the 

matched load at the end of the LN, 

 
Fig.6 - kR-lR single cell with the characteristic impedance 

Z0. 

 

In this case the positive characteristic load impedance is 

expressed as: 

𝑍0 =
𝑘𝑅

2
∙  1 +  1 + 4

𝑙

𝑘
                                                        (7) 

 

This result reveals the connection among the LNs, the 

―golden section‖ and the ―Fibonacci sequence‖.In fact, from 

eq. 2, when Zl= Z2 = R and 𝑙 = 𝑘 = 1, we have: 

 

𝑍0
2 − 𝑅𝑍0 − 𝑅2 = 0                                                        (8) 

 

that can be rewritten as the following proportion: 

𝑅 ∶  𝑍0 =  𝑍0 ∶  𝑅 + 𝑍0                                                              (9) 

 

In this form and assuming R=1Ω, eq.9 looks like the 

second (11) of the following two proportion relationships: 

1st1:X =X :1-Xwhose solutions are: 0.618...and -1.618...                                            

(10) 

2'ld1:X=X:1+X whose solutions are: -0,618...and 1.618...                                                                                   

(11) 

Along this paper we will call as the "golden ratio", equal 

to the irrational number: 1.61803398...,
1

Φ
 the "golden section" 

equal to the irrational number: 0.61803398...which we 

indicate in the followingas α  and Φ2equal to: 2.61803398... 

These three numbers are really unique. They have the same 

decimals! This property will be briefly demonstrated in 

appendix A1. Here we recall some other known particular 

properties of these numbers: 

𝛷 is the value of 𝑍0 given by the formula (7) when we 

assume that 𝑅 = 1Ω and 𝑙 = 𝑘 = 1, i.e. the positive solution 

of the equation 

𝜙2 − 𝜙 − 1 = 0                                                                     (12) 

So we have directly that: 

𝜙2 = 𝜙 + 1or𝜙2 − 1 = 𝜙                                                (13) 

And 

𝜙 − 1 =
1 +  5

2
− 1 =

 5 − 1

2
=

  5 − 1   5 + 1 

2  5 + 1 

=
2

 5 + 1
=

1

𝜙
= 𝛼                             (14) 

𝛼2𝑛 − 𝛼2𝑛+2 =
1

𝜙2𝑛
−

1

𝜙2𝑛+2
=

𝜙2 − 1

𝜙2𝑛+2
=

𝜙

𝜙2𝑛+2
=

1

𝜙2𝑛+1

= 𝛼2𝑛+1                                                (15) 

2 − 𝜙 = 1 + 1 − 𝜙 = 1 −
1

𝜙
=

𝜙 − 1

𝜙
=

1

𝜙2

= 𝛼2                                                     (16) 

We note that Φ2has a value relatively closed to the basic 

neperiannumber e = 2.7172... which appears, as well know,in 

thesolutions of the second order differential equation 

governing continuous transmission lines.Along this paper we 

will use the F pointerrelated to the vector of Fibonacci 

numbers as follows: 

F 0 F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10 F 11 F 12 F 13 F 14 F 15 F 16 

0 l 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 

……….(17) 

It is worth pointing out that the two positive solutions of 

eq.8correspond to the following two limits 

 

Φ = 1,618 … = lim
𝑛→∞

𝐹𝑛+1

𝐹𝑛
  ; 𝛼 = 0,618 … = lim

𝑛→∞

𝐹𝑛
𝐹𝑛+1

 18  

 

The circumstance that in a LN matched load we find, in the 

particular case of resistive cells, the concept of proportion 

reveals the intrinsic mechanism of directly coupled cells 

forming the LN. In fact also all the Fibonacci numbers are 

directly coupled each other by the following recursive 

relationship: 

 

𝐹𝑛  =  𝐹𝑛−1 +  𝐹𝑛−2                                                                 19  

 

And each Fibonacci number is a quasi-middle proportional 

between the preceding number and the subsequent one, 

unless an error of plus or minus one, whose relative 

importance decreases increasing the number itself: 

𝐹𝑛
2 ≅  𝐹𝑛−1 ∙  𝐹𝑛+1 with an error equal to   − 1 𝑛      (20) 

 

Further, if we consider the following sequence of 

non-matched networks having increasing number of not 

matched resistive cells with𝑙 = 𝑘 = 1 and also 𝑉𝑔 = 1 and 

R=1 and shown in fig.7,We obtain the following sequence for 

the biasing current 𝐼𝑔  

 

𝐼𝑔 =  
1

2
,

3

5
,

8

13
, …… . .                                               (21) 
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Fig 7: Currents of the supply source in a sequence of LNs 

with increasing number of cells. 

If for instance we increase the number of cells, we get: for  

four cells LN,𝐼𝑔 =
21

34
A,for the five cells LN𝐼𝑔 =

55

89
𝐴 and 

so on. 

So we can say that in this kind of resistive LN, the ratio 

among a couple of successive Fibonacci numbers gives the 

values of the biasing currents 𝐼𝑔 . Further, if the biasing 

voltage is 1 Volt, we have that the input impedance of the 

cascade of cells is exactly the reciprocal of the ratio which 

gives the said current𝐼𝑔 , i.e. 𝑍0 = 1/𝐼𝑔 . Then as example for 

the four cells LN, 𝑍0 =
34

21
Ω and, for the five cells LN, 

𝑍0 =
89

55
 Ω. 

A similar ―Fibonacci-like‖ behavior is found if we 

consider the general case in which 𝑙 ≠ 𝑘assuming the ratio  
𝑙

𝑘
as equal to ρ , for a simplification of the matter. If, again, 

𝑅 = 1 , we obtain as values of the above currents, the 

following sequence of ratios of Fibonacci-like polynomials: 

 

𝐼𝑔 =  
1

𝜌+1
,

2𝜌+1

𝜌2+3𝜌+1
,

3𝜌2+4𝜌+1

𝜌3+6𝜌2+5𝜌+1
, …… . .                         (22) 

 

And the coefficients of the polynomials at the 

denominators of sequence (22) can be easily determined 

remembering the so-called DFF triangle [  ]; see appendix 2 

The sequences (21) and (22) are the same if  𝜌 = 1 . 

However, if this is not the case, a factor 𝜌must be introduced 

in the relation (19) between Fibonacci numbers obtaining a 

new ―Fibonacci-like‖ sequence expressed as: 

 

𝐹(𝜌)
𝑛 = 𝐹(𝜌)

𝑛−1 + 𝜌 ∙ 𝐹(𝜌)
𝑛−2

                                     (23) 

 

The following Table I gives the ―Fibonacci-like‖ 

sequences for the integer values ρ in the range (1 ÷ 10). 

As above let us consider a four cells LN,  𝑛 =  8 , ρ = 4, 

so 𝐹𝑛
(𝜌)

= 441 and441 =  181 +  4 ∙ 65; 𝐹𝑛+1
(𝜌)

= 1165 and 

1165 = 441 + 4 ∙ 181. The current 𝐼𝑔is 𝐼𝑔 =
441

1165
 𝐴 and the 

input impedance is: 

𝑍0 =
1165

441
Ω. 

 

 

 

 

 

 

 

 

 

 

Table 1: Orizontalaxes  from left to right = n; vertical axes 

from top to bottom = ρ (from1 to 10) 

 

 
 

However, if the ratio 𝜌 is less than onethe rule expressed 

by (19) must be modified: in this case the rule is different for 

the terms of the sequence having  even or odd indexes: 

 

𝐹2𝑛
(𝜌)

= 𝐹2𝑛−1
(𝜌)

∙
1

𝜌
+ 𝐹2𝑛−2 

(𝜌)
; 𝐹2𝑛+1

(𝜌)

= 𝐹2𝑛
(𝜌)

+ 𝐹2𝑛−1
(𝜌)

                       (24) 

The following Table II gives the ―Fibonacci-like‖ 

sequences for the ρ values in the range (1-1/10). 

 

As a particular example let us consider 𝑛 = 4, 𝜌 =

 1/2, so𝐹2𝑛
(𝜌)

  = 112 and 112 =  2𝑥41 + 30 for the first 

relation (24);𝐹2𝑛+1 = 153 and 153=112+41 according to the 

second relation (24). Again 𝐹2𝑛+2 = 418 = 2 ∙ 153 +
112and 𝐹2𝑛+3 = 418 + 153 = 571 . So the source current 

of the four cell   LN is 𝐼𝑔 =
112

153
 𝐴 and the inputi impedance is 

𝑍0 =
153

112
 Ω. And for a LN of five cells we have 𝐼𝑔 =

418

571
 𝐴 

and 𝑍0 =
571

418
 Ω 

 
Table 2:Orizontal axes from left to right = n; vertical axes 

from top to bottom = ρ( from 0.1 to 1) 
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V. COMPARISON BETWEEN MATCHED AND NON-MATCHED 

LNS. 

A. Non matched LNs 

Let we start by considering the features of the non-matched 

resistive LNs as shown in fig. 8. 

 

 
Fig.8–Resistive LN not closed with its characteristic 

impedance Z0: impedance values in the indicated points.All 

the impedances are considered towards the right as indicated 

by arrows. 

In these LNs we point out the role played by Fibonacci 

numbers,which allow the straightforward determination of all 

the impedances at any point and all the voltages at any node 

as well. Note that the impedances of the LN of Fig. 8 are, 

obviously, if we pose R=1, the reciprocal of the currents. As 

it is easy to prove [IEEE], all the nodes in fig. 8have voltages 

expressed by the ratio of two Fibonacci numbers. Indeed, 

starting from the voltage source, i.e. from the node 𝑛, we 

have: 

 

𝐼𝑛 =
𝑉𝑛

𝑍𝑛
= 𝑉𝑔∙

𝐹2𝑛−1

𝐹2𝑛 ∙𝑅
                                                       (25) 

and: 

𝑉𝑛−1 = 𝑉𝑛 − 𝐼𝑛 ∙ 𝑅 = 𝑉𝑔 ∙  1 −
𝐹2𝑛−1

𝐹2𝑛
 = 𝑉𝑔

𝐹2𝑛−𝐹2𝑛−1

𝐹2𝑛
=

𝑉𝑔
𝐹2𝑛−2

𝐹2𝑛
                                                                                      (26) 

Then, using an iterative procedure: 

 𝐼𝑘 = 𝑉𝑔
𝐹2𝑛−2𝑘+1

𝐹2𝑛 ∙𝑅
;  𝑉𝑛−𝑘 = 𝑉𝑔

𝐹2𝑛−2𝑘

𝐹2𝑛
                            (27)                                                         

Formulae (27) allow the direct determination of any node 

voltage and any current of longitudinal branch, and by a 

straightforward procedure also currents in any transversal 

branch.The procedure is simple: only the Fibonacci numbers 

and their pointers are sufficient to solve the LN represented in 

fig.8 whatever the number of cells can be. 

Increasing the number of cells the voltages along the R-R 

LN approximate better and better the power of the golden 

section α = l/ϕ.. In fact we have  that: 

V k (l/ϕ
2) k where k = 1,2,3,..,N indicate the number of cells 

...................................(28) 

Vkϕ
-2k=(ϕ2)-k= α2k , with α = 0,61803398..............(29) 

The differences between V K and α 2k are relatively small, 

but never zero and this is conceptually important when 

matched LNs are taken into consideration, as we will see in 

the following. 

A simple expression for the node voltages (see fig.8) of the 

non-matched resistive LN is the following: 

Vn,8=F2(N-n)+1/F2N+1………   …….…………………… (30) 

where N does represent the total number of cells and n 

goes from 1 to N. 

In practice, once the number N of cells has been chosen, let 

us suppose 8, as an example, we use as denominator (F2N+1 ) 

which corresponds to F17 =1597and, as far as the numerator is 

concerned, it starts from F1and only considers the odd 

numbers till the last one correspondent to F15 = 610 

We give here the node voltages determined by the 

above-illustrated method. These results have been confirmed 

by experiments, of course in a first approximation, essentially 

due to the experimental uncertainties related to the resistance 

values. 

The exact voltage values are given, with reference to fig. 8 

without the characteristic  impedanceZ0, by:  

𝑉1,8   =  𝐹15/ 𝐹17 =
610

1597
 

 

𝑉2,8   =  𝐹13/ 𝐹17 =
 233

1597
 

 

𝑉3,8 =  𝐹11/ 𝐹17  =  
89

1597
 

 

𝑉4,8  =   𝐹9/  𝐹 17 =  
34

1597
 

 

𝑉5,8   =   𝐹7/  𝐹17  =  
13

1597
 

 

𝑉6.8   =   𝐹5 /  𝐹17 =
5

1597
 

 

𝑉7,8   =   𝐹3  /  𝐹 17 =
2

1597
 

 

𝑉 8,8  =   𝐹1/  𝐹17  =
1

1597
 

 

As we can see, only Fibonacci numbers are used for the 

above node voltage expressions as numerator and 

denominator 

B. Matched LNs:Case of resistances all equal to each 

other  𝜚 = 1  

In this case, by assuming that 𝑘 = 𝑙 = 1  in eq.7 we 

obtain: 

𝑍0 = 𝑅
1 +  5

2
= 𝑅𝜙 

which corresponds to the input impedance of the entire 

infinite LN and also the same impedance that each cell views 

as input impedance of the remaining of the LN, as reported in 

figure 9, where is also indicated the impedance viewed in the 

middle of the cell, say  

𝑍0
, = 𝑍0 − 𝑅 = 𝑅 𝜙 − 1 = 𝑅/𝜙. 

Also in the resistive LN closed on its characteristic 

impedance 𝑍0(fig.9) the node voltages are once again easily 

determined, however not through the ratio of two Fibonacci 

numbers: instead it can be shown that these voltage values, if 

𝑅 = 1 Ω and the driving voltage is 1 𝑉, are exactly expressed 

by theeven powers of the golden section α, where α = 1/ ϕ   

i.e.: (α 2,α4 α 6, …. α16 ), as in fig.9.Further, since the driving 

voltage is the sum of the entire voltage differences between 

two consecutive nodes and the residual voltage across 𝑍0 , 
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we can write: 

 

  
𝟏

𝝓𝟐𝒏
−

𝟏

𝝓𝟐𝒏+𝟐
 +

𝟏

𝝓𝟖

𝟖

𝒏=𝟎

= 𝟏                                          (𝟑𝟏) 

 

Or, taking account that the presence of the 

termination𝑍0which renders infinite the LN: 

  
𝟏

𝝓𝟐𝒏
−

𝟏

𝝓𝟐𝒏+𝟐
 

∞

𝒏=𝟏

=   
𝝓𝟐 − 𝟏

𝝓𝟐𝒏+𝟐
 =   

𝝓

𝝓𝟐𝒏+𝟐
 =

∞

𝒏=𝟏

∞

𝒏=𝟏

  
𝟏

𝝓𝟐𝒏+𝟏
 

∞

𝒏=𝟏

=  𝜶𝟐𝒏+𝟏 =

∞

𝒏=𝟏

𝟏                                                  (𝟑𝟐) 

 

We note that in the infinite LN, as in fig.9, the voltages and 

the currents of each cell are middle proportional (MP) with 

respect to the homologue quantities of the preceding and 

successive cell respectively: 

 the voltage across the longitudinal branch: 

 

 𝜶𝟐𝒏+𝟐 − 𝜶𝟐𝒏+𝟒 𝟐 =  𝜶𝟐𝒏 − 𝜶𝟐𝒏+𝟐  𝜶𝟐𝒏+𝟒 − 𝜶𝟐𝒏+𝟔  
 

 the current of the longitudinal branch: 

 
𝜶𝟐𝒏+𝟐 − 𝜶𝟐𝒏+𝟒

𝑹
 

𝟐

=  
𝜶𝟐𝒏 − 𝜶𝟐𝒏+𝟐

𝑹
  

𝜶𝟐𝒏+𝟒 − 𝜶𝟐𝒏+𝟔

𝑹
  

 

the voltage across the transversal branch: 

 

 𝜶𝟐𝒏+𝟐 𝟐 = 𝜶𝟐𝒏 ∙ 𝜶𝟐𝒏+𝟒                                                                                    

 the current of the transversal branch: 

 
𝜶𝟐𝒏+𝟐

𝑹
 

𝟐

=
𝜶𝟐𝒏

𝑹
∙
𝜶𝟐𝒏+𝟒   

𝑹
 

And also the current of the transversal branch is MP among 

the currents of the longitudinal branches of the preceding and 

successive cell, recalling property (15) and referring to figure 

10: 

 

 𝛼2𝑛+2 2

𝑅2
=

𝛼2𝑛 − 𝛼2𝑛+2

𝑅
∙
𝛼2𝑛+2 − 𝛼2𝑛+4

𝑅
=

𝛼2𝑛+1𝛼2𝑛+3

𝑅2

=
𝛼4𝑛+4

𝑅2
 

 

 
 

Fig. 9–Infinite discrete resistive LN: the voltages and the 

impedances along the line are indicated. 

 
Fig. 10 – Infinite discrete resistive LN: the currents across 

the branches of the LN are indicate 

Remembering that𝛼 =
1

𝜙
, we have for all the currents of 

the branches of the resistive LN of figure 10: 

𝑰𝒈 = 𝑰𝟎𝟏  =
𝟏

𝝓
;  𝑰𝟏𝟎  =

𝟏

𝝓𝟐
;  𝑰𝟏𝟐 =

𝟏

𝝓𝟑
 ; 𝑰𝟐𝟎

=  
𝟏

𝝓𝟒
; …… ; 𝑰𝟕𝟖 =  

𝟏

𝝓𝟏𝟓
;  𝑰𝟖𝟎

=  
𝟏

𝝓𝟏𝟔
                (𝟑𝟑) 

Since the current of the driving source is the sum of all the 

currents of the transversal branches, we also have 

that:  
𝟏

𝝓𝟐𝒏 
𝟖
𝒏=𝟏 + 𝑰𝒁𝒐 =

𝟏

𝝓
 34  

 

Or, for an infinite LN: 

   
𝟏

𝝓𝟐𝒏 
∞
𝒏=𝟏 =

𝟏

𝝓
                                                                   (𝟑𝟓) 

So that, collecting the two results (28) and (31), we have 

that: 

  
1

ϕn
 

∞

n=1

= 1 +
1

ϕ
= ϕ                                                  (36) 

 

C.  Matched LNs:  Case of resistances responding to the 

following condition : 𝜚 = 1 . 

In this case, assuming 𝑘 = 1 𝑎𝑛𝑑 𝑘/𝑙 = 𝜚  in (7), the 

characteristic impedance becomes: 

𝑍0 = 𝑅
1 +  1 + 4𝜚

2
                                               (37) 

and: 

𝑍0
, = 𝑍0 − 𝑅 = 𝑅  

1 +  1 + 4𝜚

2
− 1 

= 𝑅
 1 + 4𝜚 − 1

2
(38) 

Choosing for instance𝜚 =
𝜙

4
, we obtain: 

𝑍0 = 𝑅
1 +  1 + 𝜙

2
= 𝑅

1 + 𝜙

2
= 𝑅

𝜙2

2
→ 𝑍0

, =
𝜙 − 1

2
 

=
𝛼

2
                           (39) 

Some of the values of 𝜚that allow the elimination of the 

radix in (33) and (34) are listed below: 

𝜚 =
3

4
→ 𝑍0 =

3

2
𝑅 → 𝑍0

, =
1

2
𝑅 

𝜚 = 2 → 𝑍0 = 2𝑅 → 𝑍0
, = 𝑅 

𝜚 = 6 → 𝑍0 = 3𝑅 → 𝑍0
, = 2𝑅 

𝜚 = 12 → 𝑍0 = 4𝑅 → 𝑍0
, = 3𝑅 

𝜚 = 20 → 𝑍0 = 5𝑅 → 𝑍0
, = 4𝑅 
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VI. LNS  HAVING TWO LONGITUDINAL BRANCHES AND NOT 

CLOSED ON ITS CHARACTERISTIC IMPEDANCE. 

Another interesting circuit is the double resistive LN that 

will be briefly taken into consideration with and without the 

characteristic impedanceZ0. 

For this network (fig.11), where, as a particular case, the 

longitudinal and transversal resistor values are equal to R/2 

and R, respectivelywe have determined the differential 

voltages across allthe transversal resistors. We have found 

that their values are the same we have found for the LN 

represented in fig.8. 

 

 
Fig.11 Double resistive LN, non matched at its end with 

Z0 

 

For fig.11 we have the following transversal voltage 

values.  

V 1,16 = 610/1597    

V 2,15 = 233/1597        

V 3,14 = 89/1597   

V 4,13 = 34/1597   

V 5,12 = 13/1597   

V 6,11 = 5/1597   

V 7,10 = 2/1597   

V8,9  =1/1597       

Also in this case we see a strong link with the Fibonacci 

numbers which determine the exact values of the differential 

voltages, but we like to point out that all the above voltages 

are close but non coincident respectively to; α2α4  α6  α8α10 α12  

α14  α16  

 
Fig.12: Double resistive LN matched with Zo 

 

It is perhaps useful to plot these values and see the 

behavior of the voltages along this type of LN. when the 

comparison is with respect to the natural exponential 

behavior. See fig 13 

 

 

 
Fig. 13 Behavior of the two described exponentials 

 ___ The classical exponential ex 

 ……..The exponential Φ𝑥
 

 ----  The difference  Φ𝑥 − 𝑒𝑥  

 

As we can see the difference is relatively small and reaches 

its maximum value when X is equal to 1. 

Another resistive LN.which gives evidence of Fibonacci 

numbers is that shown in fig.15, whereall the longitudinal 

resistors have a value equal to R/2, all the transversal resistors 

have a value equal to R. In this case, the L.N. is terminated by 

its characteristic impedance Z0 

 

 
Fig.14: Double resistive LN matched with Zo 

The following table N°3 gives the impedance values in the 

different points signd by capital  letters,represented in fig.14 

with three different cases (k=1/2,l=1; k=1,l=1/2; k=1,l=1) of 

longitudinal and transversal impedances. 

 
 

Fig.15: Resistive LN closed with the Characteristic 

impedance Zo with longitudinal resistor value equal to kR 

and transversal resistor values equal to lR 
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Table 3 

Position 

 

impedances 

 

impedances 

 

impedances 

 k=1/2;l=1 k=1;l=1/2 K=1;l=1 

A Rφ R(√2 +1) R(√3+1) 

B R/φ R(√2-1) R(√3-1) 

C Rφ R(√2 +1) R(√3+1) 

D R/φ R(√2-1) R(√3-1) 

. 

. 

O R φ R(√2 +1) R(√3+1) 

P R/φ R(√2-1) R(√3-1) 

Q Rφ R(√2 +1) R(√3+1) 

R R/φ R(√2-1) R(√3-1) 

 

The following table N°4 gives the node voltage values for 

the three types of double resistive L.N. closed on their 

characteristic impedance Z0 

 

Table 4 

Voltages   K=1;l=1 K=1;l=1/2 K=1/2;l=1 

V 1,16 (2-√3)^2 (√2 - 1)^2 α ^2 

V2,15 (2 - √3)^4 (√2 - 1)^4 α^4 

V3,14 (2 - √3)^6 (√2 - 1)^6 α^6 

V 4, 13 (2 - √3)^8 (√2 - 1)^8 α^8 

V 5,12 (2 - √3)^10 (√2 - 1)^10 α ^10 

V 6,11 (2 - √3)^12 (√2 - 1)^12 α ^12 

V7, 10 (2 - √3)^14 (√2 - 1)^14 α ^14 

V 8, 9 (2 - √3)^16 (√2 - 1)^16 α ^16 

 

The results expressed in the first column of Tab.N°3 show 

that Z0 is equal to Rϕ.This value can also be obtained by 

different values of the longitudinal and transversal resistors 

values provided that their sum be always equal to R. So, for 

instance, we can use nR/M and (M-n)R/M, as the values of 

the two longitudinal branches respectively, taking into 

account that n<M. In this condition Zo is always equal to𝑅𝜙. 

See fig16 

 
Fig.16: Dual ladder network made by longitudinal 

impedances whose sum is equal to R 

 

At the end of this work we give a view of a piece of 

DNA(taken from ―Wikipedia‖ just to show how impressive is 

its similarity in comparison with the double LN. The double 

longitudinal structures made by same sugar and phosphate 

groups look like the double longitudinal impedances in 

double LN, while the transversal impedances can be divided 

in  only two groups namely CG or  GC(three dotted line)and 

TA or AT(two dotted lines). These two groups could be 

modeled by two different impedances. 

 
 

VII. CONCLUSIONS 

We have shown a large presence of Fibonacci Numbers 

(FN) in varieties of Ladder Networks (LNs)in the particular 

case where the longitudinal and transversal impedances are 

the same. This is also thru not only in the R-R case but also in 

those case where the single cell is formed by capacitors and 

inductors. 

In non matched R-R LNs we have seen that the voltages in 

any node is expressed by the ratio of Fibonacci numbers and 

we know that each FN is ―quasi‖ middle proportional 

between the preceding and the next. 

This indicates that a perfect proportion does exist between 

the characteristic impedance and the basic element of the LN.  

The voltages inR-R LNs are perfectly expressed by the ratio 

of two FN. 

In matched R-R or C-C or even L-L LNs the much stronger 

reason …is related to the fact that the governing equation for 

the impedance determination, no matter how many single 

cells are considered, is always of the second order which is 

the basis of the middle proportion concept.  

On the other hand in those LN non closed on their 

characteristic impedance we observe the presence of the 

Fibonacci numbers whose construction does not allow a 

perfect proportion; this only happens with a growing 

approximation when the number of cells approaches infinity. 

We point out that the investigation presented in this work 

may have some positive impact in those networks 

representing approximate models of both DNA and RNA 

structures where so far some problems related to the 

equivalence between chemical basis and passive R L C 

components still exist. 

ACKNOWLEDGMENT 

Authors like to thank M.Palmacci and I.Pini for their 

involment in experimental measurements. 



                                                                                   World Journal of Research and Review  (WJRR) 

                                                                       ISSN:2455-3956,  Volume-3, Issue-6, December 2016  Pages 21-29 

                                                                                29                                                                 www.wjrr.org 

 

APPENDIX 1 

Demonstration of the fact that 1/φ, φ, φ2 have the same 

decimals, 

Starting from the following relationship: 

1,618.... = ϕ =(l + l/ϕ) ; and squaring both members we get: 

ϕ 2 = (1 + 1/ϕ) 2 or: 

ϕ 2 = 1 + 2/ϕ + 1/ϕ 2 leaving out the denominator we get: 

ϕ 4 = (1 + ϕ)2 ; taking the root square finally we have: 

ϕ 2 = 1 + ϕ = 1 + 1,618... = 2,618...cvd 

APPENDIX 2 

The DFF triangle introduced in ref [2] and reproduced in 

fig.15 where n(number of cells) and i are restricted to 5, 

allows to directly write the expression of the generic ladder 

network transfer function. 

 

 
Fig.17 A portion of the DFF triangle 

The generic term of this triangle can be expressed as 

follows: 

a(n,i) = (
n + i
n − i

) 

Using this expression and the ratio between the 

longitudinal and transversal impedances k = Z1/Z2 it is 

possible to express the transfer function as follows: 

Gn(k) = 1/ ∑ a(n,i)ki   = 1/Sn,k 

By this expression the node voltages are simply given by: 

Vβ = S n-β (k) /Sn(k) Vi 

It is worth pointing out that the sum of the numbers in each 

row gives again the Fibonacci numbers. 
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