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Abstract— This paper deals with an analysis of the different
behaviors existing between ladder networks (LN) terminated
and not terminated by the characteristic impedance Z0. The
main purpose of this work is to find, in both cases, links with the

golden ratio & and, as a consequence, with Fibonacci numbers.
Results of some simulations related to the determination of
impedances, node voltages and branch currents are given in
order to underline approximation effects on the node voltages
and branch currents related to both the presence and absence of
Z0.This study has been firstly applied to R-R ladder networks
but it is here extended to consider other kinds of LNs, having
other types of single cells such as C-C ; L-L whose characteristic
impedances have also been determined.

Double resistive LN have also been investigated for which
impedances in any cell, currents in any branch and voltages in
any node have been determined in the two cases of presence
and absence of the characteristic impedance and with different
ratio between longitudinal and transversal impedances. This
study has another not less relevant aim: find one of the possible
platform for the modelization of biosystems like DNA and RNA,
because these structures even if much more complex look like a
LN

Index Terms—Passive ladder Network, DNA,RNA .

I. INTRODUCTION

Passive ladder networks made by a number of single cells
having both longitudinal and transversal impedances have
been studied for a long time [1-6] due to their versatility in
representing a good model for mechanical, chemical, thermal
and electronic systems and also because they were frequently
employed in passive filters [7,8]. Their interest to day is still
alive due to the new implications in analog neural networks
and in new promising devices such as multi gate MOSFET
for multi-sensing applications, where a possible model for
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both the inversion and depletion regions falls into these
ladder networks. Furthermore, we cannot exclude in a near
future their possible implications in the study of both the
electric behavior of both DNA and RNA structures[9], and
related aspects of epigenomics. This paper, on the other hand,
considers these kinds of networks from another viewpoint:
the search of the presence of links with Fibonacci numbers. In
many cases these famous numbers are present as expression
of impedances, voltages, currents and may facilitate the rapid
calculation of their amplitudes[4]. This paper in particular
compares,as a new investigation, resistive LNs with and
without their characteristic impedance. This last, used as
termination of the finite LN, allows the R-R finite LN to be
treated as a ladder network having an infinite number of
single cells. These considerations are here extensively applied
to R-R LNs, and to a less extent to both C-C, L-L LNs.

Il. DETERMINATION OF THE CHARACTERISTIC IMPEDANCES
IN A FEW TYPES OF LADDER NETWORKS.

Let us first determine thecharacteristic impedance of a LN
formed by a number N of identical cells directly coupled each
other and characterized by a longitudinal impedance kZ1 and
a transversal impedance 122, as shown in fig.l,where k and
lare positive and real numbers.

I
(=]
=
—
=

Fig.l - Ladder network with impedances kZ and LZ

We introduce here a definition of the characteristic
impedance Z0 useful for our investigation.

A simple remark suggests that the input impedance of the
infinite LN cannot be changed if we extract a single cell: then
we assume that the input impedance and the matching
terminated impedance are identical.

To this first purpose, let us consider first a single cell,
adapted by Z,, as in Fig. 2-a),
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Fig. 2-a) Single cell of a ladder network terminated by the
characteristic impedance Z,.

Therefore,Zyis that
following equation:

impedance value satisfying the

ZO = kZl + lZz ” ZO (1)
whichgives:
Zo? —kZZy — klZ,Z, = 0 (2)

whose two solutions are expressed by:

Zo=
[11 /1+4f(§—i]
Kz, 1

kZ1 kZ!

22 22

Zo mm) 20

Fig. 2-b) Two cells of a ladder network terminated by the
characteristic impedanceZ,,.

It is easy to prove the consistency of the definition
expressed by (1). In fact, the second order equation (2) is also
obtained from fig.2-b) and also from LNs (fig. I) formed by
any number of cells. This result simplifies our considerations:
the presence of Z, allow us to deal with a discrete and infinite
transmission line.

With reference to the relationship (3), Z, will always have
two solutions, no matter how many cells are considered as it
is easy to prove! One of these solutions is positive and will be
the only one taken into account in the following.

As a remark, we notice that, if we apply the same
procedure to a continuous transmission line represented as a
single cell LN shown in fig. 3, we obtain:

R1 dx

fo —=

(1/R2) dx .

Fig.3 Single cell for a continuous transmission line made

by infinitesimal longitudinal resistor and transversal
conductance
—p1- _ZoR2
Zo=R1-dx+ =t 4)
or:
Zy %+dx —ZyR; - dx®* —RiR,-dx =0 (5)
22

Leaving out the second order term dx?, we have:

ZO = RlRZ =R if Rl = R2 (6)

as we can obtain by integration of the distributed line
differential equation when the model of fig.3 is taken into
account.

This result is quite different to that obtained above for the
discrete line and given by (3).

So we point out that the intrinsic difference between the
continuous line and the discrete one is based on the second
order infinitesimal missing term.

Indeed the feature that a discrete line is infinite does not
imply that the line becomes distributed.

I1l. CASEOFL-LANDC-C LN
Fig. 4 shows a L-L single cell closed with its characteristic

impedance Zo 3)
mL
fo —&= ML é o
=

Fig. 4 - A L-L single cell closed by its characteristic
impedance Z,

As before the adopted procedure allow us in the Laplace
domain (s=jm) the determination of Zg:

s mL-Z,
s mL+Z,

n
1+ ’1+4m

2

Zy=s-mL+

whose positive solution is:

Zy=smL-

In the particular case, when n = m,we have Zo = sL¢
Where ¢ is the golden ratio that will be discussed later.
Let us consider now the following single cell made by only
two capacitors (fig.5)
mC

nCJ—

7 [

fo —b

=+

Fig.5:A C-C single cell closed on its characteristic
impedance Z0
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For this circuit we obtain:

1
_ 1 s-nC'ZO
Zy = +
s-mC 1 n
s nC 0

Whose positive solution is:

m
~ 1 1+ ’1+4%

_s-mC. 2

Zo

In the particular case, when n = m we have Zy= =¢/smC.
IV. CONNECTIONS AMONG LNS, THE “GOLDEN SECTION”
AND THE FIBONACCI SEQUENCE.

Let us consider a LN made by all equal longitudinal
resistors kR and transversal resistors IR, whose single cell is
shown in Fig.6 with the impedance Z, representing the
matched load at the end of the LN,

kF:

Zo =0

Fig.6 - kR-IR single cell with the characteristic impedance
Zy.

In this case the positive characteristic load impedance is
expressed as:

Z _ kR 1+ 1+4l
°7 k

This result reveals the connection among the LNs, the
“golden section” and the “Fibonacci sequence”.In fact, from
eq. 2,whenZ=2,=Randl = k = 1, we have:

@)

Z} —RZy,—R*=0 (8)
that can be rewritten as the following proportion:
R:Z0=ZO:R+Z0 (9)

In this form and assuming R=1Q, e¢q.9 looks like the
second (11) of the following two proportion relationships:
1stl:X =X :1-Xwhose solutions are: 0.618...and -1.618...
(10)

2'ld1:X=X:1+X whose solutions are: -0,618...and 1.618...
(11)

Along this paper we will callPas the "golden ratio", equal
to the irrational number: 1.61803398...,% the "golden section”
equal to the irrational number: 0.61803398...which we
indicate in the followingas o and ®“equal to: 2.61803398...

These three numbers are really unique. They have the same
decimals! This property will be briefly demonstrated in

appendix Al. Here we recall some other known particular
properties of these numbers:

W~

@ is the value of Z,given by the formula (7) when we
assume that R = 1Qand [ = k = 1, i.e. the positive solution
of the equation

Pr—¢p—1=0 (12)
So we have directly that:
P>=¢+1lorgp? —1=1¢ (13)
And
¢_1_1+\/§_1_\/§—1_(\/§—1)(\/§+1)
2 2 2(WB+1)
SN (14)
“Vs+1 ¢
2n 2n+2 _ 1 1 _¢2_1_ ¢ _ 1
ar —a _¢2n_¢2n+2_¢2n+2_¢2n+2_¢2n+1
=a2n+1 (15)
2—¢>—1+1—¢—1—1——4’_1—i
B B b b P
= a? (16)

We note that ®*has a value relatively closed to the basic
neperiannumber e = 2.7172... which appears, as well know,in
thesolutions of the second order differential equation
governing continuous transmission lines.Along this paper we
will use the F pointerrelated to the vector of Fibonacci
numbers as follows:
FOFlFZFSF4FSF6F7FBF9F10F11F12F13F14F15F16
01123581321 345589 144 233 377 610 987 1597

It is worth pointing out that the two positive solutions of
eq.8correspond to the following two limits

F F
"ty =0,618... = lim —

n n-w 41

® =1,618.. = lim

n—-owo

(18)

The circumstance that in a LN matched load we find, in the
particular case of resistive cells, the concept of proportion
reveals the intrinsic mechanism of directly coupled cells
forming the LN. In fact also all the Fibonacci numbers are
directly coupled each other by the following recursive
relationship:

Fn = Fn—l + Fn—2 (19)

And each Fibonacci number is a quasi-middle proportional
between the preceding number and the subsequent one,
unless an error of plus or minus one, whose relative
importance decreases increasing the number itself:

F,%2= F,_; - F,.(with an errorequalto (—1)") (20)

Further, if we consider the following sequence of
non-matched networks having increasing number of not
matched resistive cells withl = k =1 and also I, = 1 and
R=1 and shown in fig.7,We obtain the following sequence for
the biasing current I,

I, = {%g%} 1)
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Fig 7: Currents of the supply source in a sequence of LNs
with increasing number of cells.

If for instance we increase the number of cells, we get: for
four cells LN,Ig = %A,for the five cells LNIg = %A and
S0 on.

So we can say that in this kind of resistive LN, the ratio
among a couple of successive Fibonacci numbers gives the
values of the biasing currents];. Further, if the biasing
voltage is 1 Volt, we have that the input impedance of the
cascade of cells is exactly the reciprocal of the ratio which

gives the said currentl, i.e. Z, = 1/1,. Then as example for
34

the four cells LN, Z, =ZQand, for the five cells LN,
_®
Zoy = = Q

A similar “Fibonacci-like” behavior is found if we
consider the general case in which [ # kassuming the ratio

1 . . .
7as equal to p , for a simplification of the matter. If, again,

R =1, we obtain as values of the above currents, the
following sequence of ratios of Fibonacci-like polynomials:

(22)

1 2p+1 3p2+4p+1
Iy

p+1 ’p2+3p+1'p3+6p2+5p+1 IR

And the coefficients of the polynomials at the
denominators of sequence (22) can be easily determined
remembering the so-called DFF triangle [ ]; see appendix 2

The sequences (21) and (22) are the same if p=1.
However, if this is not the case, a factor pmust be introduced
in the relation (19) between Fibonacci numbers obtaining a
new “Fibonacci-like” sequence expressed as:

F@, =F®) _ +p- F(P)n_z (23)

The following Table I gives the “Fibonacci-like”
sequences for the integer values p in the range (1 + 10).
As above let us consider a four cells LN, (n = 8), p =4,

so F¥) = 441 and441 = 181 + 4-65; £%) = 1165 and

' In+l

1165 = 441 + 4 - 181. The current Lyis I, = —— A and the

input impedance is:
__ 1165
0™ 4a

W

24

Table 1: Orizontalaxes from left to right = n; vertical axes
from top to bottom = p (from1 to 10)

0OLE23 5 8 BN % % B W B m o W oIm B

OLIS S I 8 8 I M 68 DS I S 198 W a0 e
OLLAT IO @ % 17 5% 1199 M5 660 10 39 796 178 XM N WD
OLLS 920 65 160 W0 165 M0 789 1985 466l [0 SHS0 88040 DIOSI0 SAGTAS 0TI
OLL 61040 % 300 M0 28 6091 106 40506 136681 SS6l L0666 M6OMTL E10SGDL 207456 GMASIAGH
(0007155 15 @ D6 409 15 S0 U049 S ST MY S NS00 T ZEA
01L& 15 70 17 61 1905 GGI6 1951 GG63 0590 GGel 211IOL GOS8 USTISS G9IMGSl YMINIG TOMMdS%3
O 1LY 1789 15 S50 287 10033 300 113663 301005 10069 dSHND LSLAS0N ARMADTS I6M6AA1 SSIMONELS 160008053
O 111019109 20 1261 3181 15130 9159 185529 GITI60 20O5T2L U506 MGOP0S0 100117099 35TSEON9 1MSUESAM0 dsesvsel
O 111020131 341 1651 S061 2571 TAI61 287890 1009701 3888611 13085621 SWIII 19070741 THASISH DBA8TaAG61 RG3ITILTI

However, if the ratio p is less than onethe rule expressed
by (19) must be modified: in this case the rule is different for
the terms of the sequence having even or odd indexes:

1
) —_ ) .
sz = FZr/zJ—1 ; + Fz;f—z ’ F27/1J+1
— g ()
= By + By (24)
The following Table II gives the “Fibonacci-like”
sequences for the p values in the range (1-1/10).

As a particular example let us consider n =4,p =
1/2,50E%’ =112and 112 = 2x41 + 30 for the first
relation (24);F,,.1 = 153 and 153=112+41 according to the
second relation (24). Again Fy,,, =418 =2-153 +
112and F,, .3 = 418 + 153 = 571 . So the source current
ofthe fourcell LNis I, = % A and the inputi impedance is

153 418

Zy =— Q. And for a LN of five cells we have I, = — A
112 571
and Z, = % Q

Table 2:Orizontal axes from left to right = n; vertical axes
from top to bottom = p( from 0.1 to 1)

I8

Iy s s e W 8 % W m m o % 1% XMl

PUT 81030 40 10 B8 48 51 560 200 2 M3 NIF M S0 Toml
PUT 40T 90 3 46 169 10 W0 000 % 49% B85 2970 S 1008
DLAT WD W16 66 %5 476 SH0 270 S0 L6564 193005 QW64 I06RS 8l0 aaldlon
DUS 635 40 10 001646 1906 10075 1300 700 S0W0 529685 cl0l66 360315 A0GR1 4RRRAI0 D9L3401
DLGT 48 5 T 45 1906 09 10 2609 1884 211305 145080 L66OSR9 11433190 TOAATT SIBCS4 1081141
DUT 863 70560 631 4077 3608 44293 49041 393000 4961 493047 3936808 31051503 486311 275560680 310957991
DUE S 80 8 T B8 TR0 8720 TI68 6729 T66240 G545 T6O4TSD 459361 310680 3TIO0AL P4SISL00G 8931049
019 1099 109 1080 1189 11781 12970 128511 141481 1400840 1543321 15250723 16835050 1668071TS 183641229 181558740 200312346
011017120 130 1430 1561 17040 18601 203050 220651 419360 2641211 J8831670 31472881 43560480 375033361 00380400 446892745
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V. COMPARISON BETWEEN MATCHED AND NON-MATCHED
LNs.
A. Non matched LNs

Let we start by considering the features of the non-matched
resistive LNs as shown in fig. 8.

A R R R R R R
_r\(;\’;\v . vor —AAA AR W A «V« 4 \\ A \f\V'_
A4 | |
- ’—s R 1§FR$’_BF§F §—>R’~R§
FhFh1R BY4R  BBR O WMR O 13BR 53R R

Fig.8—Resistive LN not closed with its characteristic
impedance Z0: impedance values in the indicated points.All
the impedances are considered towards the right as indicated
by arrows.

In these LNs we point out the role played by Fibonacci
numbers,which allow the straightforward determination of all
the impedances at any point and all the voltages at any node
as well. Note that the impedances of the LN of Fig. 8 are,
obviously, if we pose R=1, the reciprocal of the currents. As
it is easy to prove [IEEE], all the nodes in fig. 8have voltages
expressed by the ratio of two Fibonacci numbers. Indeed,

starting from the voltage source, i.e. from the node n, we
have:

— Vn _ Fan—1
=7, =Y Fym (25)
and

_ _ _ . _Bna) _ y Pn—Fan1
s =ty =1 (1-52) -
Fon—2
rw (26)

Then, using an iterative procedure:

_ 17 Fan—2k+1, _ 1 Fan—2k
he=Vo = Ve = Vg = — (27)

Formulae (27) allow the direct determination of any node
voltage and any current of longitudinal branch, and by a
straightforward procedure also currents in any transversal
branch.The procedure is simple: only the Fibonacci numbers
and their pointers are sufficient to solve the LN represented in
fig.8 whatever the number of cells can be.

Increasing the number of cells the voltages along the R-R
LN approximate better and better the power of the golden
section a = I/¢.. In fact we have that:

V  (I/$%) “where k = 1,2,3,..,N indicate the number of cells

Vi %=(d?)™*= 0%, with o = 0,61803398.............. (29)
The differences between V «and a > are relatively small,
but never zero and this is conceptually important when
matched LNs are taken into consideration, as we will see in
the following.
A simple expression for the node voltages (see fig.8) of the
non-matched resistive LN is the following:
VHTSZFZ(N—n)+1/F2N+1 ........................................ (30)
where N does represent the total number of cells and n
goes from 1 to N.

W~

In practice, once the number N of cells has been chosen, let
us suppose 8, as an example, we use as denominator (Fan+1)
which corresponds to F;; =1597and, as far as the numerator is
concerned, it starts from Fiand only considers the odd
numbers till the last one correspondent to F.5 = 610

We give here the node voltages determined by the
above-illustrated method. These results have been confirmed
by experiments, of course in a first approximation, essentially
due to the experimental uncertainties related to the resistance
values.

The exact voltage values are given, with reference to fig. 8
without the characteristic impedanceZ,, by:

610

V1,8 = Fi5/ Fi7 = @
233

Vog = Fi3/Fi7 = 1597
89

Vsg = Fii/ Fi7 = 1597
34

V4,8 = Fy/ Fqi;= @
13

Vsg = F;/ Fi7 = 1597
Veg = Fs5/ Fiy = 1597
2

Vig = F3/ F17=W

V8,8 = F/ Fy =ﬁ

As we can see, only Fibonacci numbers are used for the
above node voltage expressions as numerator and
denominator

B. Matched LNs:Case of resistances all equal to each
other (0 = 1)

In this case, by assuming that k =1 =1 in eq.7 we
obtain:

1445

Z, =R =R¢

which corresponds to the input impedance of the entire
infinite LN and also the same impedance that each cell views
as input impedance of the remaining of the LN, as reported in
figure 9, where is also indicated the impedance viewed in the
middle of the cell, say

Zy =Zy—R=R(¢ —1) = R/.

Also in the resistive LN closed on its characteristic
impedance Z(fig.9) the node voltages are once again easily
determined, however not through the ratio of two Fibonacci
numbers: instead it can be shown that these voltage values, if
R =1 Qand the driving voltage is 1 V/, are exactly expressed
by theeven powers of the golden section a, where o = 1/ ¢
ie:(ao*ab ....al6), as in fig.9.Further, since the driving
voltage is the sum of the entire voltage differences between

two consecutive nodes and the residual voltage across Z,

25 WWW.Wjrr.org
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Sequence
we can write:
(11 az aS alﬁ alS

8 TR Ty T

1 1 1 —AW Ay ver A MW
Z (@ - ¢Zn+2) + @8 1 (31)
n=0 1

Vi, — 1w uzi a“l aﬁl a“l’ alﬁig 7y
Or, taking account that the presence of the

terminationZywhich renders infinite the LN: o

2 m) =3, (5) = 2, o) =, ()

n=1 n=1 n=1 n=1

o0
Z a2n+1 =1

n=1

(32)

We note that in the infinite LN, as in fig.9, the voltages and
the currents of each cell are middle proportional (MP) with
respect to the homologue quantities of the preceding and
successive cell respectively:

the voltage across the longitudinal branch:

(a2n+2 _ a2n+4)2 — (aZn _ a2n+2)(a2n+4 _ a2n+6)
the current of the longitudinal branch:

2
a2n+2 _ a2n+4- aZn _ a2n+2 a2n+4- _ a2n+6
R R R

the voltage across the transversal branch:

(a2n+2)2 — aZn . a2n+4
the current of the transversal branch:
a?nH2\2  gin g2n+a
( R ) "R R
And also the current of the transversal branch is MP among
the currents of the longitudinal branches of the preceding and

successive cell, recalling property (15) and referring to figure
10:

(a2n+2)2 aZn _ a2n+2 a2n+2 _ a2n+4 a2n+1a2n+3

R2 R ' R R2

‘ Rl

!

Ro R R fo fo il i

Fig. 9-Infinite discrete resistive LN: the voltages and the
impedances along the line are indicated.

|| !

26

Fig. 10 — Infinite discrete resistive LN: the currents across
the branches of the LN are indicate

1
Remembering thata = . we have for all the currents of

the branches of the resistive LN of figure 10:

A U S O
g 01 ¢' 10 ¢2' 12 ¢3' 20
1 1
:F, ...... 1178 Ejlso
= IS

Since the current of the driving source is the sum of all the

currents of the transversal branches, we also have

1 1
that:Zﬁzl (ﬁ) + 1z, = $ (34)

Or, for an infinite LN:

© 1 1

et (Gm) = 5 (35)

So that, collecting the two results (28) and (31), we have
that:

5 )-1v3es

C. Matched LNs: Case of resistances responding to the

following condition : (¢ = 1).

In this case, assuming k =1and k/l = in (7), the
characteristic impedance becomes:

(36)

1+.1+40
Zy=R——— (37)
and:
1+,1+4
ZO'=ZO—R=R(%—1>
J1+40-1
= Rf(SB)
Choosing for instancep = %, we obtain:
1+1+ 1+ 2 -1
Zy=R ¢=R ¢=R¢——>ZO'=—¢
2 2 2 2
=2 39)
> (

Some of the values of pthat allow the elimination of the
radix in (33) and (34) are listed below:
3 3 1
Q:Z_)ZO :ER _)ZO —ER
0=2->Zy=2R - Zy =R
Q=6 —)ZO=3R—)Z()'=2R
0=12-7Z,=4R - Zy = 3R
0=20->Z7Zy=5R - Zy =4R
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VI. LNS HAVING TWO LONGITUDINAL BRANCHES AND NOT
CLOSED ON ITS CHARACTERISTIC IMPEDANCE.

Another interesting circuit is the double resistive LN that
will be briefly taken into consideration with and without the
characteristic impedanceZO0.

For this network (fig.11), where, as a particular case, the
longitudinal and transversal resistor values are equal to R/2
and R, respectivelywe have determined the differential
voltages across allthe transversal resistors. We have found
that their values are the same we have found for the LN
represented in fig.8.

/A R
A~

,\%' T A "Rf>z g

IL
L |

Fig.11 Double resistive LN, non matched at its end with
20

For fig.11 we have the following transversal voltage
values.

V 115 = 610/1597

V 515 = 233/1597

Vv 314 = 89/1597

V 413 = 34/1597

V 51 = 13/1597

Vv 6,11 — 5/1597

Vv 710 = 2/1597

Vg’g =1/1597

Also in this case we see a strong link with the Fibonacci
numbers which determine the exact values of the differential

voltages, but we like to point out that all the above voltages

6 aS (110 (1,12

.. . 2 4
are close but non coincident respectively to; a“a” o
ot o8

R 1 R2 ]

J__ AN M
—1V §R R
e el ]

R Ro Ry R

Fig.12: Double resistive LN matched with Zo

It is perhaps useful to plot these values and see the
behavior of the voltages along this type of LN. when the
comparison is with respect to the natural exponential

W~

behavior. See fig 13

o8- \ E

04F % 4
N

1 L L
O0 1 2 3 4

Fig. 13 Behavior of the two described exponentials
___ The classical exponential ex

........ The exponential ®*
---- The difference (®* — e*)

As we can see the difference is relatively small and reaches
its maximum value when X is equal to 1.

Another resistive LN.which gives evidence of Fibonacci
numbers is that shown in fig.15, whereall the longitudinal
resistors have a value equal to R/2, all the transversal resistors
have a value equal to R. In this case, the L.N. is terminated by
its characteristic impedance Z,

Fig.14: Double resistive LN matched with Zo

The following table N°3 gives the impedance values in the
different points signd by capital letters,represented in fig.14
with three different cases (k=1/2,1=1; k=1,1=1/2; k=1,1=1) of
longitudinal and transversal impedances.

kR 1 kR 2 KR8

6 kR 7
IRTT Yy y p—

_J__W
- ém IR §m

—AM—
PI5S0 FI1IG kR DIOC kR

z-

B3k

kR R16Q KR

Fig.15: Resistive LN closed with the Characteristic
impedance Zo with longitudinal resistor value equal to kR
and transversal resistor values equal to IR
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Table 3

Position impedances | impedances | impedances

k=1/2;1=1 k=1;1=1/2 K=1;l=1
A Ro R(\2 +1) R(V3+1)
B R/o R(\2-1) R(V3-1)
C Ro R(\V2 +1) R(V3+1)
D R/o R(\2-1) R(V3-1)
0 R ¢ R(\2 +1) R(\3+1)
P R/o R(\2-1) R(V3-1)
Q Ro R(\V2 +1) R(V3+1)
R R/o R(\2-1) R(V3-1)

The following table N°4 gives the node voltage values for
the three types of double resistive L.N. closed on their
characteristic impedance Z,

Table 4

Voltages K=1;1=1 K=1,;1=1/2 K=1/2;1=1
V 1,16 (2-\3)"2 (\2-1)"2 0”2
V2,15 (2-3)4 (\2-1)M4 o4
V3,14 (2-\3)%6 (\N2-1)"6 06

V 4,13 (2-3)'8 (\2-1)"8 o8
V5,12 (2-\3)710 (N2 - 1)M0 o"10
V6,11 (2-V3)712 (N2 - 1)M2 0”12
V7,10 (2-3)°14 (\2 - )74 a4
V8,9 (2-\3)°16 (N2 - 1)7M6 0”16

The results expressed in the first column of Tab.N°3 show
that Z, is equal to R¢.This value can also be obtained by
different values of the longitudinal and transversal resistors
values provided that their sum be always equal to R. So, for
instance, we can use nR/M and (M-n)R/M, as the values of
the two longitudinal branches respectively, taking into

account that n<M. In this condition Zo is always equal toR¢.
See figl6

n/M*R
3 1
Zo —&» R Zo
1 !
R*(M-n)/M

Fig.16: Dual ladder network made by longitudinal
impedances whose sum is equal to R

At the end of this work we give a view of a piece of
DNA (taken from “Wikipedia” just to show how impressive is
its similarity in comparison with the double LN. The double
longitudinal structures made by same sugar and phosphate
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groups look like the double longitudinal impedances in
double LN, while the transversal impedances can be divided
in only two groups namely CG or GC(three dotted line)and
TA or AT(two dotted lines). These two groups could be
modeled by two different impedances.
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VII. CONCLUSIONS

We have shown a large presence of Fibonacci Numbers
(FN) in varieties of Ladder Networks (LNs)in the particular
case where the longitudinal and transversal impedances are
the same. This is also thru not only in the R-R case but also in
those case where the single cell is formed by capacitors and
inductors.

In non matched R-R LNs we have seen that the voltages in
any node is expressed by the ratio of Fibonacci numbers and
we know that each FN is “quasi” middle proportional
between the preceding and the next.

This indicates that a perfect proportion does exist between
the characteristic impedance and the basic element of the LN.
The voltages inR-R LNs are perfectly expressed by the ratio
of two FN.

In matched R-R or C-C or even L-L LNs the much stronger
reason ...is related to the fact that the governing equation for
the impedance determination, no matter how many single
cells are considered, is always of the second order which is
the basis of the middle proportion concept.

On the other hand in those LN non closed on their
characteristic impedance we observe the presence of the
Fibonacci numbers whose construction does not allow a
perfect proportion; this only happens with a growing
approximation when the number of cells approaches infinity.

We point out that the investigation presented in this work
may have some positive impact in those networks
representing approximate models of both DNA and RNA
structures where so far some problems related to the
equivalence between chemical basis and passive R L C
components still exist.
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APPENDIX 1

Demonstration of the fact that 1/, ¢, ¢° have the same
decimals,

Starting from the following relationship:

1,618.... = ¢ =(I + l/d) ; and squaring both members we get:
¢2=(1+1d)?or:

¢ 2=1+ 2/¢p + 1/ ? leaving out the denominator we get:

¢ *= (1 + ¢$)?; taking the root square finally we have:
¢p?=1+¢d=1+1,618..=2,618...cvd

APPENDIX 2

The DFF triangle introduced in ref [2] and reproduced in
fig.15 where n(number of cells) and i are restricted to 5,
allows to directly write the expression of the generic ladder
network transfer function.

i 0 1 2 3 4 5
n N
0 1
1 1 1
2 1 3 1
3 1 6 5 1
4 1 10 15 7 1
5 1 15 35 28 9 1

Fig.17 A portion of the DFF triangle

The generic term of this triangle can be expressed as
follows:

ani)=C 1

Using this expression and the ratio between the
longitudinal and transversal impedances k = Z1/Z2 it is
possible to express the transfer function as follows:

Gn(k)=1/3 a(n,i)ki = 1/Sn,k

By this expression the node voltages are simply given by:

VB =S n-p (k) /Sn(k) Vi

It is worth pointing out that the sum of the numbers in each
row gives again the Fibonacci numbers.
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