On the Technical Quality Evaluation of Rapid Application Development Software Products in a Visual Environment

Laura Silvia Vargas-Pérez, Agustín Francisco Gutiérrez-Tornés, Edgardo Manuel Felipe-Riverón, Inés Zambrano-Dávila, Ricardo Peña-Galeana

Abstract—This paper presents a model for the technical quality evaluation of Rapid Application Development (RAD) software products in a visual environment. It addresses organizations, companies and final users that need to select in an effective and easy way the most appropriate software to develop their applications amongst those in the market. It also gives a guideline for the concrete instrumentation of the model features, such as ranking procedures. Finally, it discusses the results of the evaluation of three of these tools.

Index Terms—Technical quality evaluation, Rapid Application Development tools, software product quality

I. INTRODUCTION

Rapid Application Development (RAD) is a method used for the elaboration of software products mainly based upon the continuous interactive prototyping and design of the system with a huge involvement and participation of final users by means of computerized tools [1]. Some papers and thesis deal with this subject mainly concerned upon the quality of the method and the resulting product, but poorly about how to select the proper RAD tool from those today in the market [2]. This article presents a method for the technical evaluation and selection of the more convenient RAD software in accordance with the organization’s individual purpose.

To evaluate any software product, it is necessary first to establish its desired quality properties and then the manner of measuring them by means of a group of significant metrics [3], [4],[5], [6]. These will provide indicators, which will lead to a strategy for the technical evaluation of the product quality. It is important to do the measurements in an easy way so to interpret the results without any possible ambiguity [7], [8],[9], [13], [14].

Therefore, one must build a qualimetric model that identifies the quality components and their inter relations. Its objective is to facilitate the qualitative and quantitative evaluation of these components. The qualimetric model generally represents the entirety of the evaluation elements. Usually a tree of hierarchical structure classifies them, where the characteristics appear in the higher level, the sub characteristics in the intermediate level, and the attributes in the lowest one. In this article, we present such a model and its implementation.

II. TYPES OF MEASURES

There are two types of evaluation objectives:

- To identify problems that can be rectified, and
- To compare the quality of a product with alternative products or against requirements.

This research refers to the second objective. The type of required measurements will depend on the purpose of the evaluation. If the primary purpose is to detect and to correct deficiencies, many measurements can be made within the software to visualize and to control improvements. When comparing the quality of a product with alternative products or against requirements, it is important to base the specification of the evaluation on a precise qualimetric model, measurement methods and scales of range for each metric [10], [11],[12], [13]. The method presented here in, allows a comparative analysis among different types of Rapid Application Development tools in a visual environment from which the user will be able to select the most appropriate to fulfill its needs [14],[15].

III. STATE-OF-THE-ART AND RELATED WORKS

For some years a varied sort of quality measurement models mainly based upon international standards has been developed. These models are very useful, but they are usually very generic and so they should be adapted for their practical use. Previous works focuses on the evaluation of software development processes: Carballo [19]; Moreno and Lopez, 2004 [20]; Olsina and Covella, 2006 [21]; Piattini and Rolón, 2006 [22]; Pastor et al. 2006 [23] and others. Carballo [19] tries to estimate and control the quantitative administration of software projects. Moreno and Lopez [20] use software engineering metrics to evaluate grammatical analyzers, and focus the evaluation at the analysis process. Olsina and Covella [21] guide his efforts to the evaluation of Web application quality. Piattini and Rolón [22] deal in some of his works with the evaluation of the complexity of the business processes. Pastor et al. [23] presents a usability
model to evaluate this characteristic during the analysis stage and during the software development process, within the perspective of the MDA (Model Driven Architecture). Villalba et al. present an interesting approach about how to create qualitative models for any particular domain [7].

In this proposal, the objective is different, since we are evaluating commercial products. Therefore, here we take as reference not only the basic elements of international standards, but also several more practical models, namely: ISO/IEC 9126 [11], ISO/IEC 14598 [12], SQUARE [16], [18], IEEE 1061 [10], MECA [13], MACS [14] and SUMI [17].

IV. METHODOLOGY AND EVALUATION MODEL

The design of this model, bases itself on the coalition of the already mentioned. A part is adopted and adapted to conform the design of the proposed model (see Fig. 1). It is opportune to emphasize that the software products for which the technical evaluation model is designed must be already in the operational stage. Being commercial products, the information concerning their development as well as their source code are not available; thus the internal metrics are not taken into account.

To evaluate software quality, the user has first to determine the quality evaluation requirements. Then he specifies its design and executes the evaluation process, thus carrying out the measurements that the model includes. This here model has six tasks (Fig. 2), each one dealing with a particular quality characteristic or property. These are subdivided into sub characteristics and then into attributes. Those attributes related to quality in use, that represent the measurement of the effect of the software product from an user point of view, will have a particular importance [6], [7], [11].

One of the purposes of this qualimetric model is to provide a range for comparison among the variety of visual environment software developing tools to any kind of user (expert or beginner). In accordance with this, it has to be a flexible one. So, the model suggested in Fig. 2 is the to be followed by experienced final users, while beginners will use the one shown in Fig. 3.

V. METRICS AND EVALUATION SCALE DEFINITIONS

To evaluate the attributes quantitative measurements are carried out by means of a given metric. The result and the so obtained value can be projected into a map on a scale. This value does not show the satisfaction level of the requirements. That is why the scale has to be divided in ranges according to different degrees of satisfaction. Some examples of how to do it are the following:

- To divide the scale into two categories: unsatisfactory and satisfactory.
- To divide these categories in five levels A, B, C and D (all them satisfactory) and E (unsatisfactory).

Level A is the best. It is the Ideal level to achieve. The product expected results would probably exceed the requirements. Level B is advisable. It considers possible to reach the expected result with the available resources. Level C is the average. The system will be performing without any malfunctioning. Level D is the lowest valid level. It is the limit for the user’s acceptance since requirements will be just fulfilled. Finally, there is the level E. In this case the product does not fulfill the minimum quality requirements (see Figure).
Metric is defined as "a quantitative measure of the degree in which a system, component or process possesses a given attribute" [9]. In order to properly measure the different tool performance one must follow these guidelines:

- Observation of the software performance in order to evaluate the difference between the current execution results and the requirements specification (a view on test and quality validation).
- Unexpected occurrences on performance time or resources utilization during the software operation.

Therefore, evaluating all attributes belonging to a given sub characteristic one obtains an average value that evaluates that sub characteristic in particular. Then, evaluating all the sub characteristics of a given characteristic the user calculates another average value that evaluates that characteristic in particular. Finally, evaluating all the characteristics a new average value that corresponds to the software product as a whole is calculated. The mathematical method is the following [24]:

Quality indicator of the product:

$$IC_p = \frac{\sum_{j=1}^{n} ICC_j}{n}$$

Where:

- ICC_j is the quality indicator of the characteristic j.
- n is the number of characteristics in the model.

Quality indicator of the characteristic j:

$$ICC_j = \frac{\sum_{k=1}^{m} ICSC_k}{m}$$

Where:

- $ICSC_k$ is the quality indicator of the subcharacteristic k.
- m is the number of sub characteristics within the characteristic k.

Quality indicator of the subcharacteristic k:

$$ICSC_k = \frac{\sum_{x=1}^{k} VAA_x}{k}$$

Where:

- VAA_x is the assigned value to the attribute x.

Thus, when applying the evaluation format you use three types of metrics:

- Direct instructions to the user for carrying out a specific task, taking note of certain indicators (for example: time, number of occurrences of certain event, etc.) The result will be a quantity within the proposed range (Fig. 4).
- Direct questions to the user to determine the existence of an essential attribute within the evaluated tool. The result will be an affirmative (1) or a negative (0) one (Fig. 4).
- Metrics that depend on the value of certain indicator derived from the realization of a certain task. They serve to calculate a set of parameters with values within the proposed interval (Fig 4).

In order to support this model, 44 metrics were developed and documented, just as it appears in the format of Fig. 5 and 6. Another 11 metrics were adapted from SUMI [12].
On the Technical Quality Evaluation of Rapid Application Development Software Products in a Visual Environment

VI. PRESENTATION OF THE PROCESS AND RESULTS

To capture the evaluation data is not an easy task. For that reason, simple and comprehensive formats have been designed to facilitate the evaluation process.

Mainly the formats constitute a verification lists (checklist). These are questionnaires (or asseverations) that should be answered (or confirmed) by the user capturing one of the values corresponding to a given scale (Fig. 7).

The control matrix is a complementary tool regarding all aspects related to the supervision process and helps to plan and summarize the content and guidance of the system’s development. It usually includes a control variable (what is measured), the measurement manner, the place and moment when it is done, the standard followed, etc. Fig. 8 shows an example of part of the control matrix used to obtain the evaluation results of a particular characteristic.

At the end a final report is generated. Here the general results and percentage are captured. An outline shows the elements where the particular software product obtained a good classification quality level. Fig. 9, 10. and 11 show the results of the evaluation of three of the still most popular RAD visual environments tools.

VII. CONCLUSIONS AND FUTURE WORKS

The results obtained through the application of the tool MECRAD [25] are the following:

The VisualStudio.Net obtained a general average evaluation of 0.89 (89%) for beginners and a punctuation of 0.88 (88%) among experts. Its weakness lies in portability. This is comprehensible, due to its dependence upon Microsoft’s Windows platform. Its quality classification level is Satisfactory, without recommendations, since it does not require modifications in its design (only updating) and therefore it is accepted thoroughly.

The results obtained from the other two products in their evaluation, have only 2% of variability. The level of quality classification obtained in these development platforms was Excellent for Net Beans and Eclipse.

To provide a more realistic assessment the final result is the combination of different users evaluation of the same type (expert or basic). This will allow a more realistic final technical report (Fig. 12).
Any of the three visual environment system mentioned above are considered technically advisable for application developments. For that reason, if one requires a decision about the acquisition of some of these environments, one takes in account other important parameters, such as cost, platform or environment in which the application will be developed, systems interacting within the environment and others. The model does not contemplate these parameters, since it is limited to the technical quality evaluation of the visual tools themselves.

As a future work, it would be advisable to make periodic revisions of the model for its improvement, attempting for example to introduce the evaluation of tools in the visual WEB sites environment, as well as in other kinds of environments.

REFERENCES

Laura Silvia Vargas-Pérez. She received the B.Sc. degree in Electronic Engineering from Technological Institute of San Luis Potosí, México, in 1987, and her M.Sc. degree from Center for Computing Research of the National Polytechnic Institute of Mexico in 2006. She is currently Full Professor and Senior Researcher at the Technological Institute of Ciudad Madero, Tamaulipas, México. Her research interests are on different topics of Software Engineering, Quality, and Educative Software. Currently she is studying a PhD in Projects in Universidad Internacional Iberoamericana.

Agustín Francisco Gutiérrez-Tornés. He received the B.Sc. degree in Economics from the Institute of Economics, University of Havana, Cuba, in 1970, and his Ph.D. degree from the Enterprise Improvement Research Center, Agricultural Academy (SGGW-AR), Warsaw, Poland, in 1984. Actually, he acts as Full Professor at the Faculty of Sciences and Information Technology (CyTI) of the Autonomous University of Guerrero (UAGro). His research interests are on different topics of Software Engineering.

Edgardo Manuel Felipe-Riverón. He received the B.Sc. degree in Electrical Engineering from the Higher Polytechnic Institute Jose Antonio Echeverría, Havana, Cuba, in 1967. He received the Ph.D. degree in Technical Sciences from the Computer and Automation Research Institute, Budapest, Hungary, in 1977. He is currently Full Professor and Senior Researcher at the Center for Computing Research of the National Polytechnic Institute of Mexico. He is member of the National Researchers System of Mexico. His research areas of interest are on Image Processing and Image Analysis, Computer Vision and Pattern Recognition, in particular color quantization, retina analysis, biometric solutions, document analysis and mathematical morphology applications.

Juan Inés Zambrano-Dávila. She received her Bachelor's degree in Mathematics at the Mathematics Academic Unit of the Autonomous University of Guerrero in 2001, and her Master's degree in Computer Sciences in 2013 from the same university. Actually, she works at this institution as Full Professor at the Faculty of Sciences and Information Technology (CyTI). Her research interests are on different topics of Software Engineering.

Ricardo Peña-Galeana. He received his Mechanical Electricity Engineer degree in 1995, and his Master's degree in Engineering in 2004 both from the National Autonomous University of Mexico. Actually, he acts as Full Professor at the Faculty of Sciences and Information Technology (CyTI) of the Autonomous University of Guerrero (UAGro). His research interests are on different topics of Software Engineering.